EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Boundary Integral Equation Methods for Solids and Fluids

Download or read book Boundary Integral Equation Methods for Solids and Fluids written by Marc Bonnet and published by Wiley. This book was released on 1999-07-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The boundary element method is more appropriate than the finite element method to tackle linear, wave propagation, infinite domain, mobile boundaries and unknown boundaries problems. In some engineering applications, both methods are combined. This book presents the mathematical basis of this method and its computer implementation. Numerous applications to fluid mechanics, mechanics of solids, acoustics and electromagnetism are developed.

Book Selected Topics in Boundary Integral Formulations for Solids and Fluids

Download or read book Selected Topics in Boundary Integral Formulations for Solids and Fluids written by Vladimir Kompiš and published by Springer. This book was released on 2014-05-04 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book outlines special approaches using singular and non-singular, multi-domain and meshless BEM formulations, hybrid- and reciprocity-based FEM for the solution of linear and non-linear problems of solid and fluid mechanics and for the acoustic fluid-structure interaction. Use of Trefftz functions and other regularization approaches to boundary integral equations (BIE), boundary contour and boundary node solution of BIE, sensitivity analysis, shape optimization, error analysis and adaptivity, stress and displacement derivatives in non-linear problems smoothing using Trefftz polynomials and other special numerical approaches are included. Applications to problems such as noise radiation from rolling bodies, acoustic radiation in closed and infinite domains, 3D dynamic piezoelectricity, Stefan problems and coupled problems are included.

Book Boundary Integral Methods in Fluid Mechanics

Download or read book Boundary Integral Methods in Fluid Mechanics written by H. Power and published by Computational Mechanics. This book was released on 1995 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title brings together classical and recent developments on the application of integral equation numerical techniques for the solution of fluid dynamic problems. The particular technique adopted is the Boundary Element Method (BEM), which is recognized as one of the most efficient numerical methods to solve boundary value problems.

Book Boundary Integral Equation Analyses of Singular  Potential  and Biharmonic Problems

Download or read book Boundary Integral Equation Analyses of Singular Potential and Biharmonic Problems written by D. B. Ingham and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic and biharmonic boundary value problems (BVP) arising in physical situations in fluid mechanics are, in general, intractable by analytic techniques. In the last decade there has been a rapid increase in the application of integral equation techniques for the numerical solution of such problems [1,2,3]. One such method is the boundary integral equation method (BIE) which is based on Green's Formula [4] and enables one to reformulate certain BVP as integral equations. The reformulation has the effect of reducing the dimension of the problem by one. Because discretisation occurs only on the boundary in the BIE the system of equations generated by a BIE is considerably smaller than that generated by an equivalent finite difference (FD) or finite element (FE) approximation [5]. Application of the BIE in the field of fluid mechanics has in the past been limited almost entirely to the solution of harmonic problems concerning potential flows around selected geometries [3,6,7]. Little work seems to have been done on direct integral equation solution of viscous flow problems. Coleman [8] solves the biharmonic equation describing slow flow between two semi infinite parallel plates using a complex variable approach but does not consider the effects of singularities arising in the solution domain. Since the vorticity at any singularity becomes unbounded then the methods presented in [8] cannot achieve accurate results throughout the entire flow field.

Book Integral Methods in Science and Engineering

Download or read book Integral Methods in Science and Engineering written by Christian Constanda and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​

Book The Boundary Element Method  Volume 1

Download or read book The Boundary Element Method Volume 1 written by L. C. Wrobel and published by John Wiley & Sons. This book was released on 2002-04-22 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The boundary element method (BEM) is a modern numerical techniquewhich has enjoyed increasing popularity over the last two decades,and is now an established alternative to traditional computationalmethods of engineering analysis. The main advantage of the BEM isits unique ability to provide a complete solution in terms ofboundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with acomprehensive and up-to-date account of the boundary element methodand its application to solving engineering problems. Each volume isa self-contained book including a substantial amount of materialnot previously covered by other text books on the subject. Volume 1covers applications to heat transfer, acoustics, electrochemistryand fluid mechanics problems, while volume 2 concentrates on solidsand structures, describing applications to elasticity, plasticity,elastodynamics, fracture mechanics and contact analysis. The earlychapters are designed as a teaching text for final yearundergraduate courses. Both volumes reflect the experience of theauthors over a period of more than twenty years of boundary element research. This volume, Applications in Thermo-Fluids and Acoustics, provides acomprehensive presentation of the BEM from fundamentals to advancedengineering applications and encompasses: Steady and transient heat transfer Potential and viscous fluid flows Frequency and time-domain acoustics Corrosion and other electrochemical problems. A unique feature of this book is an in-depth presentation of BEMformulations in all the above fields, including detaileddiscussions of the basic theory, numerical algorithms and practicalengineering applications of the method. Written by an internationally recognised authority in the field,this is essential reading for postgraduates, researchers andpractitioners in civil, mechanical and chemical engineering andapplied mathematics.

Book The Boundary Element Method  Volume 2

Download or read book The Boundary Element Method Volume 2 written by M. H. Aliabadi and published by John Wiley & Sons. This book was released on 2002-04-29 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.

Book Singular Integral Equations

Download or read book Singular Integral Equations written by E.G. Ladopoulos and published by Springer. This book was released on 2000-06-06 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new technology of the twentieth-one century. Chapter 1 is devoted with a historical report and an extended outline of References, for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the finite-part singular integral equations, as closed form solutions for the above type of integral equations are available only in simple cases. Also, Chapter 2 provides further a generalization of the well known Sokhotski-Plemelj formulae and the Nother theorems, for the case of a finite-part singular integral equation.

Book Boundary Integral and Singularity Methods for Linearized Viscous Flow

Download or read book Boundary Integral and Singularity Methods for Linearized Viscous Flow written by C. Pozrikidis and published by Cambridge University Press. This book was released on 1992-02-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to theory, this study focuses on practical application and computer implementation in a coherent introduction to boundary integrals, boundary element and singularity methods for steady and unsteady flow at zero Reynolds numbers.

Book Integral Methods in Science and Engineering

Download or read book Integral Methods in Science and Engineering written by Barbara S Bertram and published by CRC Press. This book was released on 2019-05-20 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Book Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates

Download or read book Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates written by M. Kitahara and published by Elsevier. This book was released on 2014-12-03 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It provides the only self-contained description of the method and fills a gap in the literature. No-one seriously interested in eigenvalue problems of elasticity or in the boundary integral equation method can afford not to read this book. Research workers, practising engineers and students will all find much of benefit to them.Contents: Introduction. Part I. Applications of Boundary Integral Equation Methods to Eigenvalue Problems of Elastodynamics. Fundamentals of BIE Methods for Elastodynamics. Formulation of BIEs for Steady-State Elastodynamics. Formulation of Eigenvalue Problems by the BIEs. Analytical Treatment of Integral Equations for Circular and Annular Domains. Numerical Procedures for Eigenvalue Problems. Numerical Analysis of Eigenvalue Problems in Antiplane Elastodynamics. Numerical Analysis of Eigenvalue Problems in Elastodynamics. Appendix: Dominant mode analysis around caverns in a semi-infinite domain. Part II. Applications of BIE Methods to Eigenvalue Problems of Thin Plates. Fundamentals of BIE Methods for Thin Plates. Formulation of BIEs for Thin Plates and Eigenvalue Problems. Numerical Analysis of Eigenvalue Problems in Plate Problems. Indexes.

Book The Fast Solution of Boundary Integral Equations

Download or read book The Fast Solution of Boundary Integral Equations written by Sergej Rjasanow and published by Springer Science & Business Media. This book was released on 2007-04-17 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.

Book Boundary Integral Equations

Download or read book Boundary Integral Equations written by George C. Hsiao and published by Springer Nature. This book was released on 2021-03-26 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.

Book Symmetric Galerkin Boundary Element Method

Download or read book Symmetric Galerkin Boundary Element Method written by Alok Sutradhar and published by Springer Science & Business Media. This book was released on 2008-09-26 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetric Galerkin Boundary Element Method presents an introduction as well as recent developments of this accurate, powerful, and versatile method. The formulation possesses the attractive feature of producing a symmetric coefficient matrix. In addition, the Galerkin approximation allows standard continuous elements to be used for evaluation of hypersingular integrals. FEATURES • Written in a form suitable for a graduate level textbook as well as a self-learning tutorial in the field. • Covers applications in two-dimensional and three-dimensional problems of potential theory and elasticity. Additional basic topics involve axisymmetry, multi-zone and interface formulations. More advanced topics include fluid flow (wave breaking over a sloping beach), non-homogeneous media, functionally graded materials (FGMs), anisotropic elasticity, error estimation, adaptivity, and fracture mechanics. • Presents integral equations as a basis for the formulation of general symmetric Galerkin boundary element methods and their corresponding numerical implementation. • Designed to convey effective unified procedures for the treatment of singular and hypersingular integrals that naturally arise in the method. Symbolic codes using Maple® for singular-type integrations are provided and discussed in detail. • The user-friendly adaptive computer code BEAN (Boundary Element ANalysis), fully written in Matlab®, is available as a companion to the text. The complete source code, including the graphical user-interface (GUI), can be downloaded from the web site http://www.ghpaulino.com/SGBEM_book. The source code can be used as the basis for building new applications, and should also function as an effective teaching tool. To facilitate the use of BEAN, a video tutorial and a library of practical examples are provided.

Book Basic Control Volume Finite Element Methods for Fluids and Solids

Download or read book Basic Control Volume Finite Element Methods for Fluids and Solids written by Vaughan R. Voller and published by World Scientific. This book was released on 2009 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Control Volume Finite Element Method (CVFEM) is a hybrid numerical method, combining the physics intuition of Control Volume Methods with the geometric flexibility of Finite Element Methods. The concept of this monograph is to introduce a common framework for the CVFEM solution so that it can be applied to both fluid flow and solid mechanics problems. To emphasize the essential ingredients, discussion focuses on the application to problems in two-dimensional domains which are discretized with linear-triangular meshes. This allows for a straightforward provision of the key information required to fully construct working CVFEM solutions of basic fluid flow and solid mechanics problems.

Book Boundary Integral Equation Methods and Numerical Solutions

Download or read book Boundary Integral Equation Methods and Numerical Solutions written by Christian Constanda and published by Springer. This book was released on 2016-03-16 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and researchers in the fields of boundary integral equation methods, computational mechanics and, more generally, scientists working in the areas of applied mathematics and engineering. Given its detailed presentation of the material, the book can also be used as a text in a specialized graduate course on the applications of the boundary element method to the numerical computation of solutions in a wide variety of problems.

Book Direct and Indirect Boundary Integral Equation Methods

Download or read book Direct and Indirect Boundary Integral Equation Methods written by Christian Constanda and published by CRC Press. This book was released on 2020-03-31 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computational power currently available means that practitioners can find extremely accurate approximations to the solutions of more and more sophisticated mathematical models-providing they know the right analytical techniques. In relatively simple terms, this book describes a class of techniques that fulfill this need by providing closed-form solutions to many boundary value problems that arise in science and engineering. Boundary integral equation methods (BIEM's) have certain advantages over other procedures for solving such problems: BIEM's are powerful, applicable to a wide variety of situations, elegant, and ideal for numerical treatment. Certain fundamental constructs in BIEM's are also essential ingredients in boundary element methods, often used by scientists and engineers. However, BIEM's are also sometimes more difficult to use in plane cases than in their three-dimensional counterparts. Consequently, the full, detailed BIEM treatment of two-dimensional problems has been largely neglected in the literature-even when it is more than marginally different from that applied to the corresponding three-dimensional versions. This volume discusses three typical cases where such differences are clear: the Laplace equation (one unknown function), plane strain (two unknown functions), and the bending of plates with transverse shear deformation (three unknown functions). The author considers each of these with Dirichlet, Neumann, and Robin boundary conditions. He subjects each to a thorough investigation-with respect to the existence and uniqueness of regular solutions-through several BIEM's. He proposes suitable generalizations of the concept of logarithmic capacity for plane strain and bending of plates, then uses these to identify contours where non-uniqueness may occur. In the final section, the author compares and contrasts the various solution representations, links them by means of boundary operators, and evaluates them for their suitability for