Download or read book Biostatistics explored through R software An overview written by Vinaitheerthan Renganathan and published by Vinaitheerthan Renganathan. This book was released on 2021-09-10 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term Statistics and Data is now familiar to most of us even though we are related to different fields such as Clinical, Biology, Business & Management, Engineering and Physical Sciences. Statistical methods are being applied in different fields including the emerging fields such as Machine Learning, Natural Language Processing and Artificial Intelligence because of the fact that each field deals with data in one form or the other. Statistical methods help decision makers to arrive at evidence based decisions by collecting, analyzing and interpreting the data. Biostatistics is a branch of statistics which is applied in the biomedical domain and it includes clinical and biological fields. Biostatistical methods include descriptive, inferential and Statistical modeling tools. Descriptive statistical tools help us to draw information and summary about the data in terms of measures of central tendency, measures of dispersion, measure of skewness and underlying probability distributions. Inferential Statistical tools help us to estimate, test the hypothesis and draw inferences about the parameters of the data. Statistical modeling tools help us to study and estimate the relationship between the variables. The book starts with the introduction of concepts in biostatistics and moves on to explore descriptive and inferential statistical tools using R Open Source Software. It then explores statistical modeling tools such as regression analysis and survival analysis. The book also covers the role of Biostatistics in the clinical trials process. Clinical trials are scientific experiments which are conducted in different phases. It involves testing of drugs and clinical procedures for treating different diseases and conditions among a sample of participants before rolling out in the market. Biostatistics tools help clinical trial researchers in deciding about the study design, sample size and analytical methods. The data set used in the book can be downloaded from Author’s Website.
Download or read book Biostatistics with R written by Babak Shahbaba and published by Springer Science & Business Media. This book was released on 2011-12-15 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.
Download or read book Biostatistics with R written by Jan Lepš and published by Cambridge University Press. This book was released on 2020-07-30 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward introduction to a wide range of statistical methods for field biologists, using thoroughly explained R code.
Download or read book An Introduction to Biostatistics written by Thomas Glover and published by Waveland Press. This book was released on 2015-06-29 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over a decade, Glover and Mitchell have provided life-sciences students with an accessible, complete introduction to the use of statistics in their disciplines. The authors emphasize the relationships between probability, probability distributions, and hypothesis testing using both parametric and nonparametric analyses. Copious examples throughout the text apply concepts and theories to real questions faced by researchers in biology, environmental science, biochemistry, and health sciences. Dozens of examples and problems are new to the Third Edition, as are “Concept Checks”—short questions that allow readers to immediately gauge their mastery of the topics presented. Regardless of mathematical background, all readers will appreciate the value of statistics as a fundamental quantitative skill for the life sciences.
Download or read book Modern Statistics with R written by Måns Thulin and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Download or read book The Book of R written by Tilman M. Davies and published by No Starch Press. This book was released on 2016-07-16 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Download or read book Introduction to Probability and Statistics Using R written by G. Jay Kerns and published by Lulu.com. This book was released on 2010-01-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
Download or read book Introductory Statistics with R written by Peter Dalgaard and published by Springer Science & Business Media. This book was released on 2008-06-27 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.
Download or read book Using R for Introductory Statistics written by John Verzani and published by CRC Press. This book was released on 2018-10-03 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Introduction to Data Analysis and Graphical Presentation in Biostatistics with R written by Thomas W. MacFarland and published by Springer Science & Business Media. This book was released on 2013-11-19 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through real-world datasets, this book shows the reader how to work with material in biostatistics using the open source software R. These include tools that are critical to dealing with missing data, which is a pressing scientific issue for those engaged in biostatistics. Readers will be equipped to run analyses and make graphical presentations based on the sample dataset and their own data. The hands-on approach will benefit students and ensure the accessibility of this book for readers with a basic understanding of R. Topics include: an introduction to Biostatistics and R, data exploration, descriptive statistics and measures of central tendency, t-Test for independent samples, t-Test for matched pairs, ANOVA, correlation and linear regression, and advice for future work.
Download or read book The R Book written by Michael J. Crawley and published by John Wiley & Sons. This book was released on 2007-06-13 with total page 953 pages. Available in PDF, EPUB and Kindle. Book excerpt: The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Download or read book Introduction to Biostatistics with JMP written by Steve Figard and published by SAS Institute. This book was released on 2019-10-04 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore biostatistics using JMP® in this refreshing introduction Presented in an easy-to-understand way, Introduction to Biostatistics with JMP® introduces undergraduate students in the biological sciences to the most commonly used (and misused) statistical methods that they will need to analyze their experimental data using JMP. It covers many of the basic topics in statistics using biological examples for exercises so that the student biologists can see the relevance to future work in the problems addressed. The book starts by teaching students how to become confident in executing the right analysis by thinking like a statistician then moves into the application of specific tests. Using the powerful capabilities of JMP, the book addresses problems requiring analysis by chi-square tests, t tests, ANOVA analysis, various regression models, DOE, and survival analysis. Topics of particular interest to the biological or health science field include odds ratios, relative risk, and survival analysis. The author uses an engaging, conversational tone to explain concepts and keep readers interested in learning more. The book aims to create bioscientists who can competently incorporate statistics into their investigative toolkits to solve biological research questions as they arise.
Download or read book OpenIntro Statistics written by David Diez and published by . This book was released on 2015-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Download or read book Overview of Bayesian Approach to Statistical Methods written by Vinaitheerthan Renganathan and published by Vinaitheerthan Renganathan. This book was released on 2022-03-23 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are being used in different fields such as Business & Economics, Engineering, Clinical & Pharmaceutical research including the emerging fields such as Machine Learning and Artificial Intelligence. Statistical methods based on the traditional frequentist approach are currently being use in these fields. With the emergence of high end computing nowadays Bayesian approach to Statistical Methods also being used in different fields. Bayesian approach involves prior, likelihood and posterior concepts in carrying out the statistical analysis. Bayesian methods assume model parameters as random as opposed to fixed in frequentist approach. It is useful even when the sample size is small. One of the drawbacks of Bayesian method is it involves subjectivity in carrying out the analysis. With the availability of advanced computing technologies, implementation of Bayesian methods is possible using Markov Chain Monte Carlo (MCMC) methods. This book provides an overview of Bayesian approaches to statistical methods and uses open source software R for carrying out analysis using sample data sets which can be downloaded from author’s website.
Download or read book Biostatistics for Epidemiology and Public Health Using R written by Bertram K.C. Chan, PhD and published by Springer Publishing Company. This book was released on 2015-11-05 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since it first appeared in 1996, the open-source programming language R has become increasingly popular as an environment for statistical analysis and graphical output. In addition to being freely available, R offers several advantages for biostatistics, including strong graphics capabilities, the ability to write customized functions, and its extensibility. This is the first textbook to present classical biostatistical analysis for epidemiology and related public health sciences to students using the R language. Based on the assumption that readers have minimal familiarity with statistical concepts, the author uses a step-bystep approach to building skills. The text encompasses biostatistics from basic descriptive and quantitative statistics to survival analysis and missing data analysis in epidemiology. Illustrative examples, including real-life research problems and exercises drawn from such areas as nutrition, environmental health, and behavioral health, engage students and reinforce the understanding of R. These examples illustrate the replication of R for biostatistical calculations and graphical display of results. The text covers both essential and advanced techniques and applications in biostatistics that are relevant to epidemiology. This text is supplemented with teaching resources, including an online guide for students in solving exercises and an instructor's manual. KEY FEATURES: First overview biostatistics textbook for epidemiology and public health that uses the open-source R program Covers essential and advanced techniques and applications in biostatistics as relevant to epidemiology Features abundant examples and exercises to illustrate the application of R language for biostatistical calculations and graphical displays of results Includes online student solutions guide and instructor's manual
Download or read book The Art of R Programming written by Norman Matloff and published by No Starch Press. This book was released on 2011-10-11 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: –Create artful graphs to visualize complex data sets and functions –Write more efficient code using parallel R and vectorization –Interface R with C/C++ and Python for increased speed or functionality –Find new R packages for text analysis, image manipulation, and more –Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.