EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biomedical Technology

    Book Details:
  • Author : Peter Wriggers
  • Publisher : Springer
  • Release : 2017-08-29
  • ISBN : 3319595482
  • Pages : 356 pages

Download or read book Biomedical Technology written by Peter Wriggers and published by Springer. This book was released on 2017-08-29 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’s last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.

Book Calcific Aortic Valve Disease

Download or read book Calcific Aortic Valve Disease written by Elena Aikawa and published by BoD – Books on Demand. This book was released on 2013-06-12 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to population aging, calcific aortic valve disease (CAVD) has become the most common heart valve disease in Western countries. No therapies exist to slow this disease progression, and surgical valve replacement is the only effective treatment. Calcific Aortic Valve Disease covers the contemporary understanding of basic valve biology and the mechanisms of CAVD, provides novel insights into the genetics, proteomics, and metabolomics of CAVD, depicts new strategies in heart valve tissue engineering and regenerative medicine, and explores current treatment approaches. As we are on the verge of understanding the mechanisms of CAVD, we hope that this book will enable readers to comprehend our current knowledge and focus on the possibility of preventing disease progression in the future.

Book Transport in Biological Media

Download or read book Transport in Biological Media written by Sid M. Becker and published by Newnes. This book was released on 2013-05-21 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. - Provides detailed mathematical model development to interpret experiments and provides current modeling practices - Provides a wide range of biological and clinical applications - Includes physiological descriptions of models

Book Biomechanics of the Aorta

Download or read book Biomechanics of the Aorta written by T. Christian Gasser and published by Elsevier. This book was released on 2024-06-18 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomechanics of the Aorta: Modelling for Patient Care is a holistic analysis of the aorta towards its biomechanical description. The book addresses topics such as physiology, clinical imaging, tissue and blood flow modeling, along with knowledge that is needed in diagnostics, aortic rupture prediction, assist surgical planning, and more. It encompasses a wide range of topics from the basic sciences (Vascular biology, Continuum mechanics, Image analysis) to clinical applications, as well as describing and presenting computational studies and experimental benches to mimic, understand and propose the best treatment of aortic pathologies. The book begins with an introduction to the fundamental aspects of the anatomy, biology and physiopathology of the aorta and proceeds to present the main computational fluid dynamic studies and biomechanical and mechanobiological models developed over the last decade. With approaches, methodologies and findings from contributors all over the world, this new volume in the Biomechanics of Living Organs series will increase understanding of aortic function as well as improve the design of medical devices and clinical interventions, including surgical procedures. - Comprehensive coverage of the main computational fluid dynamic studies and biomechanical and mechanobiological models developed over the last decade - Introduces the most recent imaging technologies to characterize factors, including aortic geometry, mechanical properties of aortic tissues, and cellular activity in the vessel wall - Synthesizes advances in vascular biomechanics, medical imaging, and computational modeling of finite element fluid and solid models

Book Biology of the Arterial Wall

    Book Details:
  • Author : Bernard I. Levy
  • Publisher : Springer Science & Business Media
  • Release : 2007-11-23
  • ISBN : 0585381461
  • Pages : 284 pages

Download or read book Biology of the Arterial Wall written by Bernard I. Levy and published by Springer Science & Business Media. This book was released on 2007-11-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology of the Arterial Wall is intended as a general reference text concerned with the biology of the vascular cells and the blood vessel wall under physiological and pathological conditions. One of the major functions of the arteries is to maintain a continuous blood flow to the organs whatever the pressure conditions, thanks to the vasomotor tone of the smooth muscle cells. Great advances have been made over the last decade in the understanding of the endothelial cells as integrators and transducers of signals originating from the blood stream. The pluripotent control functions of the endothelial cells in the vessel wall are now well recognized. A review of endothelial functions and dysfunctions is presented. Cell biology and molecular genetic studies have now identified an array of molecules elaborated by endothelial cells and vascular smooth muscle cells and by the blood-borne elements which interact with artery cells, defending the artery against injury and modulating evolving abnormal processes. Molecules which induce or inhibit endothelial and/or smooth muscle cells are currently under great scrutiny. Angiogenesis, which plays a major role in tumor growth, but may also be beneficial as a healing process in muscle ischemia, is discussed. Apoptosis, or programmed cell death, has only recently been recognized as an essential process in blood vessel modeling and remodeling. An overview of apoptosis in the vascular system is presented. It is increasingly evident that the adjustments of the blood vessel wall are made in the presence of deforming disease processes such as hypertension and atherosclerosis. The second part of the book is concerned with the blood vessel wall in disease conditions. Several chapters review the role of the vessel and vascular cells in inflammation, and vascular remodeling during arterial hypertension and aging. One chapter is devoted to atherogenesis, atheroma and plaque instability, followed by the pathophysiology of post-angioplasty restenosis, which is a crucial issue in modern interventional cardiology.

Book Vascular Biomechanics

Download or read book Vascular Biomechanics written by T. Christian Gasser and published by Springer Nature. This book was released on 2022-02-14 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook serves as a modern introduction to vascular biomechanics and provides the comprehensive overview of the entire vascular system that is needed to run successful vascular biomechanics simulations. It aims to provide the reader with a holistic analysis of the vascular system towards its biomechanical description and includes numerous fully through-calculated examples. Various topics covered include vascular system descriptions, vascular exchange, blood vessel mechanics, vessel tissue characterization, blood flow mechanics, and vascular tissue growth and remodeling. This textbook is ideally suited for students and researchers studying and working in classical and computational vascular biomechanics. The book could also be of interest to developers of vascular devices and experts working with the regulatory approval of biomedical simulations. Follows the principle of “learning by doing” and provides numerous fully through-calculated examples for active learning, immediate recall, and self-examination; Provides a holistic understanding of vascular functioning and the integration of information from different disciplines to enable students to use sophisticated numerical methods to simulate the response of the vascular system; Includes several case studies that integrate the presented material. Case studies address problems, such as the biomechanical rupture risk assessment of Abdominal Aortic Aneurysms, Finite Element analysis of structural and blood flow problems, the computation of wall stress and wall shear stress in the aorta.

Book Biomechanics of Living Organs

Download or read book Biomechanics of Living Organs written by Yohan Payan and published by World Bank Publications. This book was released on 2017-06-09 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions

Book Surgical Management of Aortic Pathology

Download or read book Surgical Management of Aortic Pathology written by Olaf H. Stanger and published by Springer. This book was released on 2019-04-15 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book follows the concept of perceiving the entire aorta as one functional organ assuming that all individual pathologies and local interventional procedures affect the up- and downstream segments with consequences for complications and disease progression. Thus any preventive or surgical strategy must recognize the aortic disease in its entirety. The book intends to cover the full spectrum of aortic pathologies, mechanisms and functional interplay. The latest available diagnostic tools and options for surgical treatment are presented by the foremost experts in their field in state-of-the-art reviews. The reader is provided with the most current and comprehensive insight into all fundamental and clinical aspects of aortic disease. All chapters are carefully complemented with figures and illustrations.

Book Cardiovascular Solid Mechanics

Download or read book Cardiovascular Solid Mechanics written by Jay D. Humphrey and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.

Book Biomechanics and Mechanobiology of Aneurysms

Download or read book Biomechanics and Mechanobiology of Aneurysms written by Tim McGloughlin and published by Springer Science & Business Media. This book was released on 2011-09-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cardiovascular disease is the leading cause of morbidity and premature death of modern era medicine. It is estimated that approximately 81 million people in the United States (US) currently have one or more of the many forms of cardiovascular disease, resulting in 1 in every 2.8 deaths, or 900,000 deaths per year. 40% of all deaths in Europe are a result of cardiovascular disease in people under the age of 75. Aneurysms form a significant portion of these cardiovascular related deaths and are defined as a permanent and irreversible localised dilation of a blood vessel greater than 50% of its normal diameter. Although aneurysms can form in any blood vessel, the more lethal aneurysms develop in the cranial arteries, and in the thoracic aorta and abdominal aorta. Frequently aneurysms are undetected and if left untreated may eventually expand until rupture with very high levels of morbidity and mortality. The biomechanics and mechanobiology of aneursymal diseases are not fully understood and this monograph aims to provide new insights into aneurysm aetiology and behavior based on the most recent biomechanics research related to this important topic. The contributors to this volume bring together a unique blend of expertise in experimental, computational and tissue biomechanics relating to aneurysm behavior and enable the reader to gain a fresh understanding of key factors influencing aneurysm behavior and treatment. Biological risk factors such as tobacco smoking, sex, age, hypertension, family history and mechanobiological risk factors such as aneurysm geometry and shape as well as mechanical properties of the diseased tissues are considered in detail as are many of the diagnostic and treatment options.

Book Computational Modeling and Simulation Examples in Bioengineering

Download or read book Computational Modeling and Simulation Examples in Bioengineering written by Nenad Filipovic and published by John Wiley & Sons. This book was released on 2021-12-14 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.

Book Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics

Download or read book Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics written by Stéphane Avril and published by Springer. This book was released on 2016-10-12 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

Book Improving Assessments of Hemodynamics and Vascular Disease

Download or read book Improving Assessments of Hemodynamics and Vascular Disease written by Magnus Ziegler and published by Linköping University Electronic Press. This book was released on 2019-04-24 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Blood vessels are more than simple pipes, passively enabling blood to pass through them. Their form and function are dynamic, changing with both aging and disease. This process involves a feedback loop wherein changes to the shape of a blood vessel affect the hemodynamics, causing yet more structural adaptation. This feedback loop is driven in part by the hemodynamic forces generated by the blood flow, and the distribution and strength of these forces appear to play a role in the initiation, progression, severity, and the outcome of vascular diseases. Magnetic Resonance Imaging (MRI) offers a unique platform for investigating both the form and function of the vascular system. The form of the vascular system can be examined using MR-based angiography, to generate detailed geometric analyses, or through quantitative techniques for measuring the composition of the vessel wall and atherosclerotic plaques. To complement these analyses, 4D Flow MRI can be used to quantify the functional aspect of the vascular system, by generating a full time-resolved three-dimensional velocity field that represents the blood flow. This thesis aims to develop and evaluate new methods for assessing vascular disease using novel hemodynamic markers generated from 4D Flow MRI and quantitative MRI data towards the larger goal of a more comprehensive non-invasive examination oriented towards vascular disease. In Paper I, we developed and evaluated techniques to quantify flow stasis in abdominal aortic aneurysms to measure this under-explored aspect of aneurysmal hemodynamics. In Paper II, the distribution and intensity of turbulence in the aorta was quantified in both younger and older men to understand how aging changes this aspect of hemodynamics. A method to quantify the stresses generated by turbulence that act on the vessel wall was developed and evaluated using simulated flow data in Paper III, and in Paper V this method was utilized to examine the wall stresses of the carotid artery. The hemodynamics of vascular disease cannot be uncoupled from the anatomical changes the vessel wall undergoes, and therefore Paper IV developed and evaluated a semi-automatic method for quantifying several aspects of vessel wall composition. These developments, taken together, help generate more valuable information from imaging data, and can be pooled together with other methods to form a more comprehensive non-invasive examination for vascular disease.

Book Ultrafast Ultrasound Imaging

Download or read book Ultrafast Ultrasound Imaging written by Hideyuki Hasegawa and published by MDPI. This book was released on 2018-09-21 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Ultrafast Ultrasound Imaging" that was published in Applied Sciences

Book Advances in Computational Plasticity

Download or read book Advances in Computational Plasticity written by Eugenio Oñate and published by Springer. This book was released on 2017-09-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together some 20 chapters on state-of-the-art research in the broad field of computational plasticity with applications in civil and mechanical engineering, metal forming processes, geomechanics, nonlinear structural analysis, composites, biomechanics and multi-scale analysis of materials, among others. The chapters are written by world leaders in the different fields of computational plasticity.

Book Computer Methods in Biomechanics and Biomedical Engineering

Download or read book Computer Methods in Biomechanics and Biomedical Engineering written by J. Middleton and published by CRC Press. This book was released on 1996-03-18 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: These papers are concerned with new advances and novel solutions in the areas of biofluids, image-guided surgery, tissue engineering and cardovascular mechanics, implant analysis, soft tissue mechanics, bone remodeling and motion analysis. The contents also feature a special section on dental materials, dental adhesives and orthodontic mechanics. This edition contains many examples, tables and figures, and together with the many references, provides the reader with invaluable information on the latest theoretical developments and applications.

Book Introductory Biomechanics

Download or read book Introductory Biomechanics written by C. Ross Ethier and published by Cambridge University Press. This book was released on 2007-03-12 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.