EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Science

    Book Details:
  • Author : Ivo D. Dinov
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2021-12-06
  • ISBN : 3110697823
  • Pages : 489 pages

Download or read book Data Science written by Ivo D. Dinov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-12-06 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.

Book Big Data Mining and Complexity

Download or read book Big Data Mining and Complexity written by Brian C. Castellani and published by SAGE. This book was released on 2022-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a much needed critical introduction to data mining and ‘big data’. Supported by multiple case studies and examples, the authors provide everything needed to explore, evaluate and review big data concepts and techniques.

Book Computational and Statistical Methods for Analysing Big Data with Applications

Download or read book Computational and Statistical Methods for Analysing Big Data with Applications written by Shen Liu and published by Academic Press. This book was released on 2015-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Book Big Data  Mining  and Analytics

Download or read book Big Data Mining and Analytics written by Stephan Kudyba and published by CRC Press. This book was released on 2014-03-12 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book ties together big data, data mining, and analytics to explain how readers can leverage them to transform their business strategy. Illustrating basic approaches of business intelligence to data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and Internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining.

Book Big Data Mining and Complexity

Download or read book Big Data Mining and Complexity written by Brian C. Castellani and published by SAGE. This book was released on 2022-03-01 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a much needed critical introduction to data mining and ‘big data’. Supported by multiple case studies and examples, the authors provide: Digestible overviews of key terms and concepts relevant to using social media data in quantitative research. A critical review of data mining and ‘big data’ from a complexity science perspective, including its future potential and limitations A practical exploration of the challenges of putting together and managing a ‘big data’ database An evaluation of the core mathematical and conceptual frameworks, grounded in a case-based computational modeling perspective, which form the foundations of all data mining techniques Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.

Book Big Data

    Book Details:
  • Author : James Warren
  • Publisher : Simon and Schuster
  • Release : 2015-04-29
  • ISBN : 1638351104
  • Pages : 481 pages

Download or read book Big Data written by James Warren and published by Simon and Schuster. This book was released on 2015-04-29 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Book Mining of Massive Datasets

Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Book Big Data in Organizations and the Role of Human Resource Management

Download or read book Big Data in Organizations and the Role of Human Resource Management written by Tobias M. Scholz and published by Peter Lang Gmbh, Internationaler Verlag Der Wissenschaften. This book was released on 2017 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data are changing the way we work. This book conveys a theoretical understanding of big data and the related interactions on a socio-technological level as well as on the organizational level. Big data challenge the human resource department to take a new role. An organization's new competitive advantage is its employees augmented by big data.

Book Rule Based Systems for Big Data

Download or read book Rule Based Systems for Big Data written by Han Liu and published by Springer. This book was released on 2015-09-09 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

Book Introduction to Algorithms for Data Mining and Machine Learning

Download or read book Introduction to Algorithms for Data Mining and Machine Learning written by Xin-She Yang and published by Academic Press. This book was released on 2019-06-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages

Book R and Data Mining

    Book Details:
  • Author : Yanchang Zhao
  • Publisher : Academic Press
  • Release : 2012-12-31
  • ISBN : 012397271X
  • Pages : 251 pages

Download or read book R and Data Mining written by Yanchang Zhao and published by Academic Press. This book was released on 2012-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work

Book Big Data Analytics in Bioinformatics and Healthcare

Download or read book Big Data Analytics in Bioinformatics and Healthcare written by Wang, Baoying and published by IGI Global. This book was released on 2014-10-31 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information.

Book Introduction to Data Mining

    Book Details:
  • Author : Pang-Ning Tan
  • Publisher : Pearson Education India
  • Release : 2016
  • ISBN : 9332586055
  • Pages : 781 pages

Download or read book Introduction to Data Mining written by Pang-Ning Tan and published by Pearson Education India. This book was released on 2016 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. Each major topic is organized into two chapters, beginni

Book Fuzzy Systems and Data Mining VII

Download or read book Fuzzy Systems and Data Mining VII written by C. Shen and published by IOS Press. This book was released on 2021-11-04 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy systems and data mining are indispensible aspects of the computer systems and algorithms on which the world has come to depend. This book presents papers from FSDM 2021, the 7th International Conference on Fuzzy Systems and Data Mining. The conference, originally due to take place in Seoul, South Korea, was held online on 26-29 October 2021, due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This year, the committee received 266 submissions, and this book contains 52 papers, including keynotes and invited presentations, oral and poster contributions. The papers cover four main areas: 1) fuzzy theory, algorithms and systems – including topics like stability; 2) fuzzy applications – which are widely used and cover various types of processing as well as hardware and architecture for big data and time series; 3) the interdisciplinary field of fuzzy logic and data mining; and 4) data mining itself. The topic most frequently addressed this year is fuzzy systems. The book offers an overview of research and developments in fuzzy logic and data mining, and will be of interest to all those working in the field of data science.

Book Bio inspired Algorithms for Data Streaming and Visualization  Big Data Management  and Fog Computing

Download or read book Bio inspired Algorithms for Data Streaming and Visualization Big Data Management and Fog Computing written by Simon James Fong and published by Springer Nature. This book was released on 2020-08-25 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.

Book Handbook of Statistical Analysis and Data Mining Applications

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Book Commercial Data Mining

Download or read book Commercial Data Mining written by David Nettleton and published by Elsevier. This book was released on 2014-01-29 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience