Download or read book Big Data Analytics Database Management Systems written by Conor Suarez and published by . This book was released on 2016-05-25 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data is a broad term that defines the structured or unstructured data sets. It is a challenging field which includes analysis, transfer and visualization of data. This book presents in-depth description of various dimensions of big data analysis like complexity and variability. It elucidates the handling and storing of data through database management systems. It examines the challenges involved in big data analysis including data mining tools and techniques. Students and professionals engaged in this field will find this book beneficial.
Download or read book Principles of Database Management written by Wilfried Lemahieu and published by Cambridge University Press. This book was released on 2018-07-12 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.
Download or read book Big Data written by James Warren and published by Simon and Schuster. This book was released on 2015-04-29 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Download or read book Effective Big Data Management and Opportunities for Implementation written by Singh, Manoj Kumar and published by IGI Global. This book was released on 2016-06-20 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Big data” has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. Effective Big Data Management and Opportunities for Implementation explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.
Download or read book Knowledge Graphs and Big Data Processing written by Valentina Janev and published by Springer Nature. This book was released on 2020-07-15 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
Download or read book Data Analytics and Big Data written by Soraya Sedkaoui and published by John Wiley & Sons. This book was released on 2018-05-24 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.
Download or read book Big Data and Analytics written by Vincenzo Morabito and published by Springer. This book was released on 2015-01-31 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners can use the book as a toolbox to improve understanding and exploit business opportunities related to Big Data and analytics.
Download or read book Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and published by Springer Nature. This book was released on 2019-10-14 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
Download or read book Information Systems for Business and Beyond written by David T. Bourgeois and published by . This book was released on 2014 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Information Systems for Business and Beyond introduces the concept of information systems, their use in business, and the larger impact they are having on our world."--BC Campus website.
Download or read book Data Mining For Dummies written by Meta S. Brown and published by John Wiley & Sons. This book was released on 2014-09-04 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.
Download or read book Big Data Analytics written by Kiran Chaudhary and published by CRC Press. This book was released on 2022-11-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics: Digital Marketing and Decision-Making covers the advances related to marketing and business analytics. Investment marketing analytics can create value through proper allocation of resources and resource orchestration processes. The use of data analytics tools can be used to improve and speed decision-making processes. Chapters examining analytics for decision-making cover such topics as: Big data analytics for gathering business intelligence Data analytics and consumer behavior The role of big data analytics in organizational decision-making This book also looks at digital marketing and focuses on such areas as: The prediction of marketing by consumer analytics Web analytics for digital marketing Smart retailing Leveraging web analytics for optimizing digital marketing strategies Big Data Analytics: Digital Marketing and Decision-Making aims to help organizations increase their profits by making better decisions on time through the use of data analytics. It is written for students, practitioners, industry professionals, researchers, and faculty working in the field of commerce and marketing, big data analytics, and organizational decision-making.
Download or read book Data Analytics and Big Data written by Soraya Sedkaoui and published by John Wiley & Sons. This book was released on 2018-05-24 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.
Download or read book DAMA DMBOK written by Dama International and published by . This book was released on 2017 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
Download or read book Big Data written by Balamurugan Balusamy and published by John Wiley & Sons. This book was released on 2021-03-15 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.
Download or read book Advanced Data Management written by Lena Wiese and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-10-29 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
Download or read book Database Management Systems written by Sotirios Zygiaris and published by Emerald Group Publishing. This book was released on 2018-08-23 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zygiaris provides an accessible walkthrough of all technological advances of databases in the business environment. Readers learn how to design, develop, and use databases to provide business analytical reports with the three major database management systems: Microsoft Access, Oracle Express and MariaDB (formerly MySQL).
Download or read book BIG DATA ANALYTICS written by THANGARAJ, M. and published by PHI Learning Pvt. Ltd.. This book was released on 2022-04-01 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for the students of B.E./B.Tech (Computer Science and Engineering/IT), M.Sc (Computer Science), MCA, and M.Sc (Data Science), this textbook mainly focuses on issues and solutions concerned with data explosion problems. Without the prior knowledge of database world, the reader of this book can easily understand the evolution of database technology in handling big data. With a focus on the analytical theory to handle high dimensional data, this text also presents illustrations using analytical tool R. The role of real-time system architecture and platforms, Hadoop ecosystem components and NoSQL database MongoDB to handle big data is also elaborated. Each chapter ends with exercise problems and multiple-choice questions, which will motivate the readers to further analyse the applicability of concepts. DISTINCTIVE FEATURES • Worked out coding using R and MongoDB and related questions using these platforms • Various analytical techniques with sample data (such as clustering, classification, rough set theory, association rules) • Basics of real-time processing, issues and remedies • Several types of data, including time-series data, correlations among data and remedial techniques to handle the issues raised in the underlying domain • Case studies/examples for in-depth understanding among the students TARGET AUDIENCE • B.E./B.Tech (Computer Science and Engineering/IT) • M.Sc (Computer Science/Data Science) • MCA