EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Doing Bayesian Data Analysis

Download or read book Doing Bayesian Data Analysis written by John Kruschke and published by Academic Press. This book was released on 2010-11-25 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and 'rusty' calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and BUGS software - Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). - Coverage of experiment planning - R and BUGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Probability Theory

    Book Details:
  • Author :
  • Publisher : Allied Publishers
  • Release : 2013
  • ISBN : 9788177644517
  • Pages : 436 pages

Download or read book Probability Theory written by and published by Allied Publishers. This book was released on 2013 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory

Book The Birnbaum Saunders Distribution

Download or read book The Birnbaum Saunders Distribution written by Victor Leiva and published by Academic Press. This book was released on 2015-10-26 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Birnbaum-Saunders Distribution presents the statistical theory, methodology, and applications of the Birnbaum-Saunders distribution, a very flexible distribution for modeling different types of data (mainly lifetime data). The book describes the most recent theoretical developments of this model, including properties, transformations and related distributions, lifetime analysis, and shape analysis. It discusses methods of inference based on uncensored and censored data, goodness-of-fit tests, and random number generation algorithms for the Birnbaum-Saunders distribution, also presenting existing and future applications. - Introduces inference in the Birnbaum-Saunders distribution - Provides a comprehensive review of the statistical theory and methodology of the Birnbaum-Distribution - Discusses different applications of the Birnbaum-Saunders distribution - Explains characterization and the lifetime analysis

Book Bayes Rules

    Book Details:
  • Author : Alicia A. Johnson
  • Publisher : CRC Press
  • Release : 2022-03-03
  • ISBN : 1000529568
  • Pages : 606 pages

Download or read book Bayes Rules written by Alicia A. Johnson and published by CRC Press. This book was released on 2022-03-03 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.

Book Bayesian Models for Categorical Data

Download or read book Bayesian Models for Categorical Data written by Peter Congdon and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

Book Probability and Bayesian Modeling

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Book Bayesian Data Analysis  Second Edition

Download or read book Bayesian Data Analysis Second Edition written by Andrew Gelman and published by CRC Press. This book was released on 2003-07-29 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Book Statistical Rethinking

Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Book Bayesian Data Analysis in Ecology Using Linear Models with R  BUGS  and Stan

Download or read book Bayesian Data Analysis in Ecology Using Linear Models with R BUGS and Stan written by Franzi Korner-Nievergelt and published by Academic Press. This book was released on 2015-04-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco

Book Bayesian Cognitive Modeling

Download or read book Bayesian Cognitive Modeling written by Michael D. Lee and published by Cambridge University Press. This book was released on 2014-04-03 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.

Book A Comparison of the Bayesian and Frequentist Approaches to Estimation

Download or read book A Comparison of the Bayesian and Frequentist Approaches to Estimation written by Francisco J. Samaniego and published by Springer Science & Business Media. This book was released on 2010-06-14 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this monograph is “comparative statistical inference. ” While the topics covered have been carefully selected (they are, for example, restricted to pr- lems of statistical estimation), my aim is to provide ideas and examples which will assist a statistician, or a statistical practitioner, in comparing the performance one can expect from using either Bayesian or classical (aka, frequentist) solutions in - timation problems. Before investing the hours it will take to read this monograph, one might well want to know what sets it apart from other treatises on comparative inference. The two books that are closest to the present work are the well-known tomes by Barnett (1999) and Cox (2006). These books do indeed consider the c- ceptual and methodological differences between Bayesian and frequentist methods. What is largely absent from them, however, are answers to the question: “which - proach should one use in a given problem?” It is this latter issue that this monograph is intended to investigate. There are many books on Bayesian inference, including, for example, the widely used texts by Carlin and Louis (2008) and Gelman, Carlin, Stern and Rubin (2004). These books differ from the present work in that they begin with the premise that a Bayesian treatment is called for and then provide guidance on how a Bayesian an- ysis should be executed. Similarly, there are many books written from a classical perspective.

Book Bayesian Modeling and Computation in Python

Download or read book Bayesian Modeling and Computation in Python written by Osvaldo A. Martin and published by CRC Press. This book was released on 2021-12-28 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.

Book Learning Statistics with R

Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Book Hierarchical Modeling and Analysis for Spatial Data

Download or read book Hierarchical Modeling and Analysis for Spatial Data written by Sudipto Banerjee and published by CRC Press. This book was released on 2003-12-17 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,

Book Bayesian Statistical Modelling

Download or read book Bayesian Statistical Modelling written by P. Congdon and published by . This book was released on 2001-05-02 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods draw upon previous research findings and combine them with sample data to analyse problems and modify existing hypotheses. The calculations are often extremely complex, with many only now possible due to recent advances in computing technology. Bayesian methods have as a result gained wider acceptance, and are applied in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Bayesian Statistical Modelling presents an accessible overview of modelling applications from a Bayesian perspective. * Provides an integrated presentation of theory, examples and computer algorithms * Examines model fitting in practice using Bayesian principles * Features a comprehensive range of methodologies and modelling techniques * Covers recent innovations in bayesian modelling, including Markov Chain Monte Carlo methods * Includes extensive applications to health and social sciences * Features a comprehensive collection of nearly 200 worked examples * Data examples and computer code in WinBUGS are available via ftp Whilst providing a general overview of Bayesian modelling, the author places emphasis on the principles of prior selection, model identification and interpretation of findings, in a range of modelling innovations, focussing on their implementation with real data, with advice as to appropriate computing choices and strategies. Researchers in applied statistics, medical science, public health and the social sciences will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a good reference source for both researchers and students.

Book Bringing Bayesian Models to Life

Download or read book Bringing Bayesian Models to Life written by Mevin B. Hooten and published by CRC Press. This book was released on 2019-05-15 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.