EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Economics Through Numerical Methods

Download or read book Bayesian Economics Through Numerical Methods written by Jeffrey H. Dorfman and published by Springer Science & Business Media. This book was released on 2006-03-31 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing researchers in economics, finance, and statistics with an up-to-date introduction to applying Bayesian techniques to empirical studies, this book covers the full range of the new numerical techniques which have been developed over the last thirty years. Notably, these are: Monte Carlo sampling, antithetic replication, importance sampling, and Gibbs sampling. The author covers both advances in theory and modern approaches to numerical and applied problems, and includes applications drawn from a variety of different fields within economics, while also providing a quick overview of the underlying statistical ideas of Bayesian thought. The result is a book which presents a roadmap of applied economic questions that can now be addressed empirically with Bayesian methods. Consequently, many researchers will find this a readily readable survey of this growing topic.

Book Numerical Bayesian Methods Applied to Signal Processing

Download or read book Numerical Bayesian Methods Applied to Signal Processing written by Joseph J.K. O Ruanaidh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the processing of signals that have been sam pled and digitized. The fundamental theory behind Digital Signal Process ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term "Digital Signal Processing", in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.

Book The Oxford Handbook of Bayesian Econometrics

Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.

Book Bayesian Estimation of DSGE Models

Download or read book Bayesian Estimation of DSGE Models written by Edward P. Herbst and published by Princeton University Press. This book was released on 2015-12-29 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.

Book Bayesian Econometrics

Download or read book Bayesian Econometrics written by Gary Koop and published by Wiley-Interscience. This book was released on 2003 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers in many fields are increasingly finding the Bayesian approach to statistics to be an attractive one. This book introduces the reader to the use of Bayesian methods in the field of econometrics at the advanced undergraduate or graduate level. The book is self-contained and does not require that readers have previous training in econometrics. The focus is on models used by applied economists and the computational techniques necessary to implement Bayesian methods when doing empirical work. Topics covered in the book include the regression model (and variants applicable for use with panel data), time series models, models for qualitative or censored data, nonparametric methods and Bayesian model averaging. The book includes numerous empirical examples and the website associated with it contains data sets and computer programs to help the student develop the computational skills of modern Bayesian econometrics.

Book Introduction to Modern Bayesian Econometrics

Download or read book Introduction to Modern Bayesian Econometrics written by Tony Lancaster and published by Wiley-Blackwell. This book was released on 2004-06-28 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Almost two hundred and forty years ago, an English clergyman named Thomas Bayes developed a method to calculate the chances of uncertain events. While his method has extensive applications to the work of applied economists, it is only recent advances in computing that have made it possible to exploit the full power of the Bayesian way of doing applied economics.In this new and expanding area, Tony Lancasters text provides a comprehensive introduction to the Bayesian way of doing applied economics. Using clear explanations and practical illustrations and problems, the text presents innovative, computer-intensive ways for applied economists to use the Bayesian method.The Introduction emphasizes computation and the study of probability distributions by computer sampling, showing how these techniques can provide exact inferences about a wide range of econometric problems. Covering all the standard econometric models, including linear and non-linear regression using cross-sectional, time series, and panel data, it also details causal inference and inference about structural econometric models. In addition, each chapter includes numerical and graphical examples and demonstrates their solutions using the S programming language and Bugs software.

Book Bayesian Inference in Dynamic Econometric Models

Download or read book Bayesian Inference in Dynamic Econometric Models written by Luc Bauwens and published by OUP Oxford. This book was released on 2000-01-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.

Book Case Studies in Bayesian Statistical Modelling and Analysis

Download or read book Case Studies in Bayesian Statistical Modelling and Analysis written by Clair L. Alston and published by John Wiley & Sons. This book was released on 2012-10-10 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.

Book Contemporary Bayesian Econometrics and Statistics

Download or read book Contemporary Bayesian Econometrics and Statistics written by John Geweke and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.

Book Bayesian Methods in Finance

Download or read book Bayesian Methods in Finance written by Svetlozar T. Rachev and published by John Wiley & Sons. This book was released on 2008-02-13 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Methods in Finance provides a detailed overview of the theory of Bayesian methods and explains their real-world applications to financial modeling. While the principles and concepts explained throughout the book can be used in financial modeling and decision making in general, the authors focus on portfolio management and market risk management—since these are the areas in finance where Bayesian methods have had the greatest penetration to date.

Book Using the Financial and Business Literature

Download or read book Using the Financial and Business Literature written by Thomas Slavens and published by CRC Press. This book was released on 2004-03-11 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specifically written to assist in the quick retrieval of commercial, industrial, manufacturing, communicative, automotive, and agricultural research, this reference conveniently assembles the most recent print and electronic research tools, compact discs, and online databases for swift collection and organization of information in the business, marketing, and financial communities.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Bayesian Econometrics

Download or read book Bayesian Econometrics written by Siddhartha Chib and published by Emerald Group Publishing. This book was released on 2008-12-18 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates the scope and diversity of modern applications, reviews advances, and highlights many desirable aspects of inference and computations. This work presents an historical overview that describes key contributions to development and makes predictions for future directions.

Book Bayesian Econometric Methods

Download or read book Bayesian Econometric Methods written by Joshua Chan and published by Cambridge University Press. This book was released on 2019-08-15 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates Bayesian theory and application through a series of exercises in question and answer format.

Book Introduction to Bayesian Econometrics

Download or read book Introduction to Bayesian Econometrics written by Edward Greenberg and published by Cambridge University Press. This book was released on 2013 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.

Book International Conference of Computational Methods in Sciences and Engineering  ICCMSE 2004

Download or read book International Conference of Computational Methods in Sciences and Engineering ICCMSE 2004 written by Theodore Simos and published by CRC Press. This book was released on 2019-04-29 with total page 1335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference of Computational Methods in Sciences and Engineering (ICCMSE) is unique in its kind. It regroups original contributions from all fields of the traditional Sciences, Mathematics, Physics, Chemistry, Biology, Medicine and all branches of Engineering. The aim of the conference is to bring together computational scientists from several disciplines in order to share methods and ideas. More than 370 extended abstracts have been submitted for consideration for presentation in ICCMSE 2004. From these, 289 extended abstracts have been selected after international peer review by at least two independent reviewers.

Book Subjective and Objective Bayesian Statistics

Download or read book Subjective and Objective Bayesian Statistics written by S. James Press and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein Wiley-Klassiker über Bayes-Statistik, jetzt in durchgesehener und erweiterter Neuauflage! - Werk spiegelt die stürmische Entwicklung dieses Gebietes innerhalb der letzten Jahre wider - vollständige Darstellung der theoretischen Grundlagen - jetzt ergänzt durch unzählige Anwendungsbeispiele - die wichtigsten modernen Methoden (u. a. hierarchische Modellierung, linear-dynamische Modellierung, Metaanalyse, MCMC-Simulationen) - einzigartige Diskussion der Finetti-Transformierten und anderer Themen, über die man ansonsten nur spärliche Informationen findet - Lösungen zu den Übungsaufgaben sind enthalten