EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Battery Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions

Download or read book Battery Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions written by U. S Department of Energy and published by Createspace Independent Pub. This book was released on 2013-02-22 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions. In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity. In 1950, there were only 70 million cars, trucks, and buses on the world's roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption. If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world's roads. In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world's roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. This National Energy Technology Laboratory (NETL) publication, “Battery-Powered Electric and Hybrid Electric Vehicles to Reduce Greenhouse Gas (GHG) Emissions: A Resource Guide for Project Development” provides national and international project developers with a guide on how to estimate and document the GHG emission reduction benefits and/or penalties of battery-powered and hybrid-electric vehicle projects. This primer also provides a resource for the creation of GHG emission reduction projects for the Activities Implemented Jointly (AIJ) Pilot Phase and in anticipation of other market-based project mechanisms proposed under the United Nations Framework Convention on Climate Change (UNFCCC). Though it will be necessary for project developers and other entities to evaluate the emission benefits of each project on a case-by-case basis, this primer will provide a guide for determining which data and information to include during the process of developing the project proposal.

Book Battery Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions

Download or read book Battery Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions written by and published by . This book was released on 2002 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions. 1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity. 2 In 1950, there were only 70 million cars, trucks, and buses on the world's roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption. 3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world's roads. 4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world's roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities.

Book Transitions to Alternative Vehicles and Fuels

Download or read book Transitions to Alternative Vehicles and Fuels written by National Research Council and published by National Academies Press. This book was released on 2013-04-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.

Book Drawdown

    Book Details:
  • Author : Paul Hawken
  • Publisher : Penguin
  • Release : 2017-04-18
  • ISBN : 1524704652
  • Pages : 258 pages

Download or read book Drawdown written by Paul Hawken and published by Penguin. This book was released on 2017-04-18 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: • New York Times bestseller • The 100 most substantive solutions to reverse global warming, based on meticulous research by leading scientists and policymakers around the world “At this point in time, the Drawdown book is exactly what is needed; a credible, conservative solution-by-solution narrative that we can do it. Reading it is an effective inoculation against the widespread perception of doom that humanity cannot and will not solve the climate crisis. Reported by-effects include increased determination and a sense of grounded hope.” —Per Espen Stoknes, Author, What We Think About When We Try Not To Think About Global Warming “There’s been no real way for ordinary people to get an understanding of what they can do and what impact it can have. There remains no single, comprehensive, reliable compendium of carbon-reduction solutions across sectors. At least until now. . . . The public is hungry for this kind of practical wisdom.” —David Roberts, Vox “This is the ideal environmental sciences textbook—only it is too interesting and inspiring to be called a textbook.” —Peter Kareiva, Director of the Institute of the Environment and Sustainability, UCLA In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. If deployed collectively on a global scale over the next thirty years, they represent a credible path forward, not just to slow the earth’s warming but to reach drawdown, that point in time when greenhouse gases in the atmosphere peak and begin to decline. These measures promise cascading benefits to human health, security, prosperity, and well-being—giving us every reason to see this planetary crisis as an opportunity to create a just and livable world.

Book Transitions to Alternative Transportation Technologies     Plug in Hybrid Electric Vehicles

Download or read book Transitions to Alternative Transportation Technologies Plug in Hybrid Electric Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-05-29 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nation has compelling reasons to reduce its consumption of oil and emissions of carbon dioxide. Plug-in hybrid electric vehicles (PHEVs) promise to contribute to both goals by allowing some miles to be driven on electricity drawn from the grid, with an internal combustion engine that kicks in when the batteries are discharged. However, while battery technology has made great strides in recent years, batteries are still very expensive. Transitions to Alternative Transportation Technologies-Plug-in Hybrid Electric Vehicles builds on a 2008 National Research Council report on hydrogen fuel cell vehicles. The present volume reviews the current and projected technology status of PHEVs; considers the factors that will affect how rapidly PHEVs could enter the marketplace, including the interface with the electric transmission and distribution system; determines a maximum practical penetration rate for PHEVs consistent with the time frame and factors considered in the 2008 Hydrogen report; and incorporates PHEVs into the models used in the hydrogen study to estimate the costs and impacts on petroleum consumption and carbon dioxide emissions.

Book Solar Powered Charging Infrastructure for Electric Vehicles

Download or read book Solar Powered Charging Infrastructure for Electric Vehicles written by Larry E. Erickson and published by CRC Press. This book was released on 2016-10-14 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Paris Agreement on Climate Change adopted on December 12, 2015 is a voluntary effort to reduce greenhouse gas emissions. In order to reach the goals of this agreement, there is a need to generate electricity without greenhouse gas emissions and to electrify transportation. An infrastructure of SPCSs can help accomplish both of these transitions. Globally, expenditures associated with the generation, transmission, and use of electricity are more than one trillion dollars per year. Annual transportation expenditures are also more than one trillion dollars per year. Almost everyone will be impacted by these changes in transportation, solar power generation, and smart grid developments. The benefits of reducing greenhouse gas emissions will differ with location, but all will be impacted. This book is about the benefits associated with adding solar panels to parking lots to generate electricity, reduce greenhouse gas emissions, and provide shade and shelter from rain and snow. The electricity can flow into the power grid or be used to charge electric vehicles (EVs). Solar powered charging stations (SPCSs) are already in many parking lots in many countries of the world. The prices of solar panels have decreased recently, and about 30% of the new U.S. electrical generating capacity in 2015 was from solar energy. More than one million EVs are in service in 2016, and there are significant benefits associated with a convenient charging infrastructure of SPCSs to support transportation with electric vehicles. Solar Powered Charging Infrastructure for Electric Vehicles: A Sustainable Development aims to share information on pathways from our present situation to a world with a more sustainable transportation system with EVs, SPCSs, a modernized smart power grid with energy storage, reduced greenhouse gas emissions, and better urban air quality. Covering 200 million parking spaces with solar panels can generate about 1/4 of the electricity that was generated in 2014 in the United States. Millions of EVs with 20 to 50 kWh of battery storage can help with the transition to wind and solar power generation through owners responding to time-of-use prices. Written for all audiences, high school and college teachers and students, those in industry and government, and those involved in community issues will benefit by learning more about the topics addressed in the book. Those working with electrical power and transportation, who will be in the middle of the transition, will want to learn about all of the challenges and developments that are addressed here.

Book Regeneration

    Book Details:
  • Author : Paul Hawken
  • Publisher : Penguin UK
  • Release : 2021-09-21
  • ISBN : 014199892X
  • Pages : 256 pages

Download or read book Regeneration written by Paul Hawken and published by Penguin UK. This book was released on 2021-09-21 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NEW YORK TIMES BESTSELLER A radically new understanding of and practical approach to climate change by noted environmentalist and creator of Drawdown, Paul Hawken The dangers of climate change and a warming world have been in the public eye for fifty years. For three decades, scientists and the United Nations have urged us to address future existential threats. In Regeneration Paul Hawken has flipped the narrative, bringing people back into the conversation by demonstrating that addressing current human needs rather than future threats is the only path to solving the climate crisis. From land to ocean, food to industries - Regeneration proposes an extensive menu of actions that collectively can reverse the overheating and degradation of our planet. The solutions, techniques, and practices range from solar power, electric vehicles, and tree planting to bioregions, azolla fern and forest farms; they are all doable, science-based, and comprise a precise and unequivocal course of action. Whether you are an individual, community focused or a national government, Regeneration is a call to arms to mobilise and create a better future for ourselves on this planet.

Book Electric and Hybrid Vehicle Technologies

    Book Details:
  • Author : United States. Congress. Senate. Committee on Environment and Public Works. Subcommittee on Toxic Substances, Environmental Oversight, Research and Development
  • Publisher :
  • Release : 1991
  • ISBN :
  • Pages : 58 pages

Download or read book Electric and Hybrid Vehicle Technologies written by United States. Congress. Senate. Committee on Environment and Public Works. Subcommittee on Toxic Substances, Environmental Oversight, Research and Development and published by . This book was released on 1991 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Potential of Electric Propulsion Systems to Reduce Petroleum Use and Greenhouse Gas Emissions in the U S  Light duty Vehicle Fleet

Download or read book Potential of Electric Propulsion Systems to Reduce Petroleum Use and Greenhouse Gas Emissions in the U S Light duty Vehicle Fleet written by Michael Khusid and published by . This book was released on 2010 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the summer of 2008, the United States of America experienced an oil shock, first of a kind since 1970s. The American public became sensitized to the concerns about foreign oil supply and climate change and global warming, and to the role of transportation in emissions of carbon dioxide and other greenhouse gases (GHG). Several proposed federal policies impose stringent limits on the transportation sector, in terms of fuel consumption and GHG emissions. Within transportation sector, light duty vehicles (LDVs) - cars, light trucks and SUVs - currently emit the most GHGs. Hybrid technology emerged as a promising option to address several of these challenges. A modern hybrid electric vehicle (HEV) offers significantly better fuel economy together with lower levels of pollutant and CO2 emissions. HEVs are currently categorized as Advanced Technology Partial Zero Emission Vehicles (AT-PZEV) by California Air Resource Board. Recently, a new generation of vehicles, plug-in hybrid electric vehicles (PHEV), has been announced in the immediate future by major auto manufacturers. While HEVs have a relatively small battery that is recharged by the engine or by regenerative braking, a larger battery of a PHEV and a charger allows a vehicle owner to recharge the battery from the electric grid. The plug-in technology further increases fuel economy and reduces emissions from the tailpipe. For example, a Chevrolet Volt PHEV is expected to be launched as 2011 model with 40 mile allelectric travel with no tailpipe emissions. However, there are multiple challenges associated with the new technology. HEVs and PHEVs incur higher costs due to additional components, such as electric motors and motor controllers, and a battery. Today's batteries provide energy storage density hundred times lower than that of gasoline. Electricity consumed by hybrids is generated by coal and other fossil fuel power plants that emit harmful chemicals and greenhouse gases. The infrastructure for electric cars is at the infancy stage. Some government policies designed to introduce all-electric cars, such as the California ZEV mandate of the late 1990s, failed to introduce a sustained number of electric vehicles to the market. To provide an integrated approach to the causes and effects of electrified powertrains, two plausible scenarios of advanced vehicle market penetration were developed. Federal policies and consumer preferences were considered as primary drivers. Biofuels were considered alongside fossil fuels as primary energy sources for transportation. Rapid adoption of PHEVs was found to cause a perceptible, but not a significant increase in electric power demand. The scenarios demonstrated ability to achieve fuel economy milestones and quantified the challenge of achieving 80% reduction in greenhouse gas emissions by 2050.

Book Review of the Research Program of the U S  DRIVE Partnership

Download or read book Review of the Research Program of the U S DRIVE Partnership written by National Research Council and published by National Academies Press. This book was released on 2013-05-13 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Review of the Research Program of the U.S. DRIVE Partnership: Fourth Report follows on three previous NRC reviews of the FreedomCAR and Fuel Partnership, which was the predecessor of the U.S. DRIVE Partnership (NRC, 2005, 2008a, 2010). The U.S. DRIVE (Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability) vision, according to the charter of the Partnership, is this: American consumers have a broad range of affordable personal transportation choices that reduce petroleum consumption and significantly reduce harmful emissions from the transportation sector. Its mission is as follows: accelerate the development of pre-competitive and innovative technologies to enable a full range of efficient and clean advanced light-duty vehicles (LDVs), as well as related energy infrastructure. The Partnership focuses on precompetitive research and development (R&D) that can help to accelerate the emergence of advanced technologies to be commercialization-feasible. The guidance for the work of the U.S. DRIVE Partnership as well as the priority setting and targets for needed research are provided by joint industry/government technical teams. This structure has been demonstrated to be an effective means of identifying high-priority, long-term precompetitive research needs for each technology with which the Partnership is involved. Technical areas in which research and development as well as technology validation programs have been pursued include the following: internal combustion engines (ICEs) potentially operating on conventional and various alternative fuels, automotive fuel cell power systems, hydrogen storage systems (especially onboard vehicles), batteries and other forms of electrochemical energy storage, electric propulsion systems, hydrogen production and delivery, and materials leading to vehicle weight reductions.

Book Electric and Hybrid Vehicles

Download or read book Electric and Hybrid Vehicles written by Gianfranco Pistoia and published by Elsevier. This book was released on 2010-07-27 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety."" Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. - Contributions from the worlds leading industry and research experts - Executive summaries of specific case studies - Information on basic research and application approaches

Book Fleets Go Green

Download or read book Fleets Go Green written by Christoph Herrmann and published by Springer. This book was released on 2018-06-11 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the results of the research project Fleets Go Green from different engineering disciplines. It includes comprehensive empirical data as well as different methods and tools for evaluating and integrating electric vehicles into corporate fleets. Finally, the authors give recommendations for fleet owners, vehicle manufacturers and political decision. The aim of the joint research project Fleets Go Green was the integrated analysis and evaluation of the environmental performance of electric and plug-in-hybrid vehicles in everyday usage on the example of fleet operations. The potential of electric vehicles for reducing the harmful environmental impacts of road transport in everyday conditions can only be analyzed and evaluated in field tests. If electric vehicles should realize their potential to reduce emissions and minimize the consumption of resources, an integrated life cycle assessment is required.

Book Three Revolutions

    Book Details:
  • Author : Daniel Sperling
  • Publisher : Island Press
  • Release : 2018-03
  • ISBN : 161091905X
  • Pages : 253 pages

Download or read book Three Revolutions written by Daniel Sperling and published by Island Press. This book was released on 2018-03 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Front Cover -- About Island Press -- Subscribe -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1. Will the Transportation Revolutions Improve Our Lives-- or Make Them Worse? -- 2. Electric Vehicles: Approaching the Tipping Point -- 3. Shared Mobility: The Potential of Ridehailing and Pooling -- 4. Vehicle Automation: Our Best Shot at a Transportation Do-Over? -- 5. Upgrading Transit for the Twenty-First Century -- 6. Bridging the Gap between Mobility Haves and Have-Nots -- 7. Remaking the Auto Industry -- 8. The Dark Horse: Will China Win the Electric, Automated, Shared Mobility Race? -- Epilogue -- Notes -- About the Contributors -- Index -- IP Board of Directors

Book Plug in Hybrid Electric Vehicle Research Roadmap

Download or read book Plug in Hybrid Electric Vehicle Research Roadmap written by University of California, Davis. Plug-in Hybrid Electric Vehicle Research Center and published by . This book was released on 2011 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Extended Range Electric Vehicle Powertrain Simulation and Comparison with Consideration of Fuel Cell and Metal air Battery

Download or read book Extended Range Electric Vehicle Powertrain Simulation and Comparison with Consideration of Fuel Cell and Metal air Battery written by Caixia Wang and published by . This book was released on 2016 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The automotive industry has been in a period of energy transformation from fossil fuels to a clean energy economy due to the economic pressures resulting from the energy crisis and the need for stricter environmental protection policies. Among various clean energy systems are electric vehicles, with lithium-ion batteries have the largest market share because of their stable performance and they are a relatively mature technology. However, two disadvantages limit the development of electric vehicles: charging time and energy density. In order to mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range, including the Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), and Extended Range Electric Vehicle (EREV). In this project, two advanced EREV powertrains have been modeled and simulated by using a lithium-ion battery as the primary energy source, with the combination of a fuel cell (FCV) or zinc-air battery as the range extenders. These two technologies were chosen as potential range extenders because of their high energy density and low life cycle emissions. The objective of this project is to compare the combined energy system (zinc-air and lithium-ion battery, fuel cell and lithium-ion battery) powered vehicles with gasoline powered vehicles (baseline vehicle, ICE engine extended range electric vehicle) and battery electric vehicles (BEV) in dimensions of energy consumption, range, emissions, cost, and customer acceptance. In order to achieve this goal, a unique zinc-air battery model was developed in this work with consideration of research data and current market status, and a control logic of the dual energy systems powertrain was created in the vehicle modeling software. A 2015 Chevrolet Camaro had been chosen as the vehicle architecture platform, with modelling of the five vehicle powertrains being built within Autonomie. This vehicle modeling software, developed by Argonne National Laboratory, runs with MATLAB/Simulink, and contains embedded drive cycles and analysis tools needed to perform the necessary simulations. Since the emission analysis in the Autonomie model only considers the vehicle in energy consumption and tailpipe emissions, therefore a Well-to-Wheel analysis method is introduced to evaluate the energy life cycle. This method takes into account the emissions from the energy production and considers the vehicle tailpipe emission. After finished all the simulations, a decision matrix was developed to compare these five powertrains from the metrics of energy consumption, emissions, customer acceptance, and life cycle cost. Three substantial conclusions were obtained from the comparison: The powertrains without use engine and gasoline as the power source have the lower tailpipe emissions and greenhouse gas emissions. The powertrains based on battery power alone, i.e. metal air extended range electric vehicle (MA-EREV) and battery electric vehicle (BEV) are not able to achieve the total range target, likely because of the relative high vehicle mass caused by the weight of the battery pack. However MA-EREV got the highest marks compared to other powertrains. However, metal-air battery is a new technology, and there are no prototypes of the technology, thus full commercialization is expected to take some time.

Book Plug In Electric Vehicles

Download or read book Plug In Electric Vehicles written by David B. Sandalow and published by Rowman & Littlefield. This book was released on 2009-09-01 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plug-in electric vehicles are coming. Major automakers plan to commercialize their first models soon, while Israel and Denmark have ambitious plans to electrify large portions of their vehicle fleets. No technology has greater potential to end the United States' crippling dependence on oil, which leaves the nation vulnerable to price shocks, supply disruptions, environmental degradation, and national security threats including terrorism. What does the future hold for this critical technology, and what should the U.S. government do to promote it? Hybrid vehicles now number more than one million on America's roads, and they are in high demand from consumers. The next major technological step is the plug-in electric vehicle. It combines an internal combustion engine and electric motor, just as hybrids do. But unlike their precursors, PEVs can be recharged from standard electric outlets, meaning the vehicles would no longer be dependent on oil. Widespread growth in the use of PEVs would dramatically reduce oil dependence, cut driving costs and reduce pollution from vehicles. National security would be enhanced, as reduced oil dependence decreases the leverage and resources of petroleum exporters. Brookings fellow David Sandalow heads up an authoritative team of experts including former government officials, private-sector analysts, academic experts, and nongovernmental advocates. Together they explain the current landscape for PEVs: the technology, the economics, and the implications for national security and the environment. They examine how the national interest could be served by federal promotion and investment in PEVs. For example, can tax or procurement policy advance the cause of PEVs? Should the public sector contribute to greater research and development? Should the government insist on PEVs to replenish its huge fleet of official vehicles? Plug-in electric vehicles are coming. But how soon, in what numbers, and to what effect? Federal policies in the years ahead will go a long way toward answering those questions. David Sandalow and his colleagues examine what could be done in that regard, as well as what should be done.

Book Review of the Research Program of the FreedomCAR and Fuel Partnership

Download or read book Review of the Research Program of the FreedomCAR and Fuel Partnership written by National Research Council and published by National Academies Press. This book was released on 2010-12-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The public-private partnership to develop vehicles that require less petroleum-based fuel and emit fewer greenhouse gases should continue to include fuel cells and other hydrogen technologies in its research and development portfolio. The third volume in the FreedomCAR series states that, although the partnership's recent shift of focus toward technologies that could be ready for use in the nearer term-such as advanced combustion engines and plug-in electric vehicles-is warranted, R&D on hydrogen and fuel cells is also needed given the high costs and challenges that many of the technologies must overcome before widespread use. The FreedomCAR (Cooperative Automotive Research) and Fuel Partnership is a research collaboration among the U.S. Department of Energy, the United States Council for Automotive Research - whose members are the Detroit automakers-five major energy companies, and two electric utility companies. The partnership seeks to advance the technologies essential for components and infrastructure for a full range of affordable, clean, energy efficient cars and light trucks. Until recently, the program primarily focused on developing technologies that would allow U.S. automakers to make production and marketing decisions by 2015 on hydrogen fuel cell-powered vehicles. These vehicles have the potential to be much more energy-efficient than conventional gasoline-powered vehicles, produce no harmful tailpipe emissions, and significantly reduce petroleum use. In 2009, the partnership changed direction and stepped up efforts to advance, in the shorter term, technologies for reducing petroleum use in combustion engines, including those using biofuels, as well as batteries that could be used in plug-in hybrid-electric or all electric vehicles.