EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Autonomous Take off and Landing for a Fixed Wing UAV

Download or read book Autonomous Take off and Landing for a Fixed Wing UAV written by Israel Lugo Cárdenas and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work studies some of the most relevant problems in the direction of navigation and control presented in a particular class of mini-aircraft. One of the main objectives is to build a lightweight and easy to deploy vehicle in a short period of time, an unmanned aerial vehicle capable of following a complete mission from take-o⁄ to the following waypoints and complete the mission with an autonomous landing within a delimitated area using a graphical interface in a computer. The Trajectory Generation It is the part that tells the drone where it must travel and are generated by an algorithm built into the drone. The classic result of Dubins is used as a basis for the trajectory generation in 2D and we have extended it to the 3D trajectory generation. A path following strategy developed using the Lyapunov approach is presented to pilot a fixed wing drone across the desired path. The key concept behind the tracking controller is the reduction of the distance between the center of mass of the aircraft p and the point q on the path to zero, as well as the angle between the velocity vector and the vector tangent to the path. In order to test the techniques developed during the thesis a customized C # .Net application was developed called MAV3DSim (Multi-Aerial Vehicle 3D Simulator). The MAV3DSim allows a read / write operation from / to the simulation engine from which we could receive all emulated sensor information and sent to the simulator. The MAV3DSim consists of three main elements, the simulation engine, the computation of the control law and the visualization interface. The simulation engine is in charge of the numeric integration of the dynamic equations of the vehicle, we can choose between a quadrotor and a xed wing drone for use in simulation. The visualization interface resembles a ground station type of application, where all variables of the vehicle s state vector can be represented on the same screen. The experimental platform functions as a test bed for the control law prototyping. The platform consists of a xed wing aircraft with a PX4 which has the autopilot function as well as a Raspberry PI mini-computer which to the implementation of the generation and trajectory tracking. The complete system is capable of performing an autonomous take-o⁄and landing, through waypoints. This is accomplished by using each of the strategies developed during the thesis. We have a strategy for take-o⁄ and landing, which is generated by the navigationon part that is the trajectory generator. Once we have generated the path, it is used by the trajectory tracking strategy and withthat we have landing and take-o⁄ autonomously.

Book A Low Cost Implementation of Autonomous Takeoff and Landing for a Fixed Wing UAV

Download or read book A Low Cost Implementation of Autonomous Takeoff and Landing for a Fixed Wing UAV written by Thomas W. Carnes and published by . This book was released on 2014 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: The take-off and landing of an Unmanned Aerial Vehicle (UAV) is often the most critical and accident prone portion of its mission. This potential hazard coupled with the time and resources necessary to train a remote UAV pilot makes it desirable to have autonomous take-off and landing capabilities for UAVs. However, a robust, reliable, and accurate autonomous takeoff and landing capability for fixed-wing aircraft is not an available feature in many low-cost UAV flight control systems. This thesis describes the design of an autonomous take-off and landing algorithm implemented on an existing low-cost flight control system for a small fixed wing UAV. This thesis also describes the autonomous takeoff and landing algorithm development and gives validation results from hardware in the loop simulation.

Book Nature Inspired Optimizers

Download or read book Nature Inspired Optimizers written by Seyedali Mirjalili and published by Springer. This book was released on 2019-02-01 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the conventional and most recent theories and applications in the area of evolutionary algorithms, swarm intelligence, and meta-heuristics. Each chapter offers a comprehensive description of a specific algorithm, from the mathematical model to its practical application. Different kind of optimization problems are solved in this book, including those related to path planning, image processing, hand gesture detection, among others. All in all, the book offers a tutorial on how to design, adapt, and evaluate evolutionary algorithms. Source codes for most of the proposed techniques have been included as supplementary materials on a dedicated webpage.

Book Autonomous Take off and Landing of a Fixed Wing Unmanned Aerial Vehicle

Download or read book Autonomous Take off and Landing of a Fixed Wing Unmanned Aerial Vehicle written by Jan Corver Roos and published by . This book was released on 2007 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Unmanned Aerial Vehicles

Download or read book Advances in Unmanned Aerial Vehicles written by Kimon P. Valavanis and published by Springer Science & Business Media. This book was released on 2008-02-26 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.

Book Design and Control of a Vertical Takeoff and Landing Fixed wing Unmanned Aerial Vehicle

Download or read book Design and Control of a Vertical Takeoff and Landing Fixed wing Unmanned Aerial Vehicle written by Yasir Malang and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

Book Unmanned Aerial Vehicle Design and Technology

Download or read book Unmanned Aerial Vehicle Design and Technology written by T. Hikmet Karakoc and published by Springer Nature. This book was released on 2023-12-19 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Vehicle Design and Technology provides readers with a comprehensive introduction to unmanned aerial systems (UAS) technology basics. The book presents clear, concise guidance on UAS system design, components, control, and operations fundamentals. Additional chapters look at unmanned aerial regulations and ethics and the historical background of UAS technology. This textbook offers a well-rounded look at unmanned flight technology, making it an ideal primer for aviation and aerospace students and anyone interested in learning more about unmanned aerial systems, including engineers, technicians, drone and flight hobbyists, and civil aviation organization officials.

Book Flight Dynamics Principles

Download or read book Flight Dynamics Principles written by Michael V. Cook and published by Butterworth-Heinemann. This book was released on 2012-10-03 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a grounding in the theory of automatic control. Flight Dynamics Principles is a student focused text and provides easy access to all three topics in an integrated modern systems context. Written for those coming to the subject for the first time, the book provides a secure foundation from which to move on to more advanced topics such as, non-linear flight dynamics, flight simulation, handling qualities and advanced flight control. - Additional examples to illustrate the application of computational procedures using tools such as MATLAB®, MathCad® and Program CC® - Improved compatibility with, and more expansive coverage of the North American notational style - Expanded coverage of lateral-directional static stability, manoeuvrability, command augmentation and flight in turbulence - An additional coursework study on flight control design for an unmanned air vehicle (UAV)

Book Autonomous Flying Robots

Download or read book Autonomous Flying Robots written by Kenzo Nonami and published by Springer Science & Business Media. This book was released on 2010-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.

Book Autonomous Control of Unmanned Aerial Vehicles

Download or read book Autonomous Control of Unmanned Aerial Vehicles written by Victor Becerra and published by MDPI. This book was released on 2019-06-24 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.

Book Small Unmanned Aircraft

Download or read book Small Unmanned Aircraft written by Randal W. Beard and published by Princeton University Press. This book was released on 2012-02-26 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.

Book Basics of Unmanned Aerial Vehicles

Download or read book Basics of Unmanned Aerial Vehicles written by Garvit Pandya and published by Notion Press. This book was released on 2021-03-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hey, we all must have noticed a drone flying at an event or maybe some other application. ? Have you ever thought about how a Drone flies? ? What are all the types and sizes of Unmanned Aerial Vehicles? ? What are all the parts and applications of a Drone? Are you interested in getting knowledge of the above questions and more related to them? Get Ready! After reading this book, the next time you see a Drone you will see it from a whole different perspective.

Book Autonomous Vertical Recovery of Fixed Wing Unmanned Aerial Vehicles

Download or read book Autonomous Vertical Recovery of Fixed Wing Unmanned Aerial Vehicles written by Trevor R. Smouter and published by . This book was released on 2013 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: As unmanned aerial vehicles (UAVs) prevail in commercial and first responder applications, the need for safer and more consistent recovery methods is growing. Standard aircraft landing manoeuvres are only possible with a suitable runway which is often unavailable outside of military applications. Alternative recovery approaches can be either contained within the aircraft, ie. parachute or be setup on the ground ie. net landing. By integrating the recovery system into the vehicle, the flight preparation can be streamlined due to the fact that setting up recovering devices is no longer required. The goal of this thesis is to investigate the application of an autonomous vertical landing capability for fixed wing UAVs using articulated motors to enter vertical flight.

Book Over 40 Publications   Studies Combined  UAS   UAV   Drone Swarm Technology Research

Download or read book Over 40 Publications Studies Combined UAS UAV Drone Swarm Technology Research written by and published by Jeffrey Frank Jones. This book was released on with total page 3840 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles

Book Automated Low Altitude Air Delivery

Download or read book Automated Low Altitude Air Delivery written by Johann C. Dauer and published by Springer Nature. This book was released on 2021-11-02 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates Unmanned Aircraft Systems (UAS) with a payload capacity of one metric ton for transportation. The authors provide a large variety of perspectives–from economics to technical realization. With the focus on such heavy-lift cargo UAS, the authors consider recently established methods for approval and certification, which they expect to be disruptive for unmanned aviation. In particular, the Specific Operations Risk Assessment (SORA) and its impact on the presented technological solutions and operational concepts are studied. Starting with the assumption of an operation over sparsely populated areas and below common air traffic, diverse measures to further reduce operational risks are proposed. Operational concepts derived from logistics use-cases set the context for an in-depth analysis including aircraft and system design, safe autonomy as well as airspace integration and datalinks. Results from simulations and technology demonstrations are presented as a proof of concept for solutions proposed in this book.

Book Encyclopedia of Robotics

Download or read book Encyclopedia of Robotics written by Marcelo H. Ang and published by Springer. This book was released on 2018-07-13 with total page 4000 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Robotics addresses the existing need for an easily accessible yet authoritative and granular knowledge resource in robotic science and engineering. The encyclopedia is a work that comprehensively explains the scientific, application-based, interactive and socio-ethical parameters of robotics. It is the first work that explains at the concept and fact level the state of the field of robotics and its future directions. The encyclopedia is a complement to Springer’s highly successful Handbook of Robotics that has analyzed the state of robotics through the medium of descriptive essays. Organized in an A-Z format for quick and easy understanding of both the basic and advanced topics across a broad spectrum of areas in a self-contained form. The entries in this Encyclopedia will be a comprehensive description of terms used in robotics science and technology. Each term, when useful, is described concisely with online illustrations and enhanced user interactivity (on SpringerReference.com).

Book Advanced UAV Aerodynamics  Flight Stability and Control

Download or read book Advanced UAV Aerodynamics Flight Stability and Control written by Pascual Marqués and published by John Wiley & Sons. This book was released on 2017-07-11 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.