EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Asymptotic Methods in the Buckling Theory of Elastic Shells

Download or read book Asymptotic Methods in the Buckling Theory of Elastic Shells written by P. E. Tovstik and published by World Scientific. This book was released on 2001 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains solutions to the most typical problems of thin elastic shells buckling under conservative loads. The linear problems of bifurcation of shell equilibrium are considered using a two-dimensional theory of the Kirchhoff-Love type. The explicit approximate formulas obtained by means of the asymptotic method permit one to estimate the critical loads and find the buckling modes.The solutions to some of the buckling problems are obtained for the first time in the form of explicit formulas. Special attention is devoted to the study of the shells of negative Gaussian curvature, the buckling of which has some specific features. The buckling modes localized near the weakest lines or points on the neutral surface are constructed, including the buckling modes localized near the weakly supported shell edge. The relations between the buckling modes and bending of the neutral surface are analyzed. Some of the applied asymptotic methods are standard; the others are new and are used for the first time in this book to study thin shell buckling. The solutions obtained in the form of simple approximate formulas complement the numerical results, and permit one to clarify the physics of buckling.

Book Asymptotic Methods in the Buckling Theory of Elastic Shells

Download or read book Asymptotic Methods in the Buckling Theory of Elastic Shells written by P. E. Tovstik and published by World Scientific. This book was released on 2001 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Equations of thin elastic shell theory. 1.1. Elements of surface theory. 1.2. Equilibrium equations and boundary conditions. 1.3. Errors of 2D shell theory of Kirchhoff-Love type. 1.4. Membrane stress state. 1.5. Technical shell theory equations. 1.6. Technical theory equations in the other cases. 1.7. Shallow shells. 1.8. Initial imperfections. 1.9. Cylindrical shells. 1.10. The potential energy of shell deformation. 1.11. Problems and exercises -- 2. Basic equations of shell buckling. 2.1. Types of elastic shell buckling. 2.2. The buckling equations. 2.3. The buckling equations for a membrane state. 2.4. buckling equations of the general stress state. 2.5. Problems and exercises -- 3. Simple buckling problems. 3.1. Buckling of a shallow convex shell. 3.2. Shallow shell buckling modes. 3.3. The non-uniqueness of buckling modes. 3.4. A circular cylindrical shell under axial compression. 3.5. A circular cylindrical shell under external pressure. 3.6. Estimates of critical load. 3.7. Problems and examples -- 4. Buckling modes localized near parallels. 4.1. Local shell buckling modes. 4.2. Construction algorithm of buckling modes. 4.3. Buckling modes of convex shells of revolution. 4.4. Buckling of shells of revolution without torsion. 4.5. Buckling of shells of revolution under torsion. 4.6. Problems and exercises -- 5. Non-homogeneous axial compression of cylindrical shells. 5.1. Buckling modes localized near generatrix. 5.2. Reconstruction of the asymptotic expansions. 5.3. Axial compression and bending of cylindrical shell. 5.4. The influence of internal pressure. 5.5. Buckling of a non-circular cylindrical shell. 5.6. Cylindrical shell with curvature of variable sign. 5.7. Problems and exercises -- 6. Buckling modes localized at a point. 6.1. Local buckling of convex shells. 6.2. Construction of the buckling mode. 6.3. Ellipsoid of revolution under combined load. 6.4. Cylindrical shell under axial compression. 6.5. Construction of the buckling modes. 6.6. Problems and exercises -- 7. Semi-momentless buckling modes. 7.1. Basic equations and boundary conditions. 7.2. Buckling modes for a conic shell. 7.3. Effect of initial membrane stress resultants. 7.4 Semi-momentless buckling modes of cylindrical shells. 7.5. Problems and exercises -- 8. Effect of boundary conditions on semi-momentless modes. 8.1. Construction algorithm for semi-momentless solutions. 8.2. Semi-momentless solutions. 8.3. Edge effect solutions. 8.4. Separation of boundary conditions. 8.5. The effect of boundary conditions on the critical load. 8.6. Boundary conditions and buckling of a cylindrical shell. 8.7. Conic shells under external pressure. 8.8. Problems and exercises -- 9. Torsion and bending of cylindrical and conic shells. 9.1. Torsion of cylindrical shells. 9.2. Cylindrical shell under combined loading. 9.3. A shell with non-constant parameters under torsion. 9.4. Bending of a cylindrical shell. 9.5. The torsion and bending of a conic shell. 9.6. Problems and exercises -- 10. Nearly cylindrical and conic shells. 10.1. Basic relations. 10.2. Boundary problem in the zeroth approximation. 10.3. Buckling of a nearly cylindrical shell. 10.4. Torsion of a nearly cylindrical shell. 10.5. Problems and exercises -- 11. Shells of revolution of negative Gaussian curvature. 11.1. Initial equations and their solutions. 11.2. Separation of the boundary conditions. 11.3. Boundary problem in the zeroth approximation. 11.4. Buckling modes without torsion. 11.5. The case of the neutral surface bending. 11.6. The buckling of a torus sector. 11.7. Shell with Gaussian curvature of variable sign. 11.8. Problems and exercises -- 12. Surface bending and shell buckling. 12.1. The transformation of potential energy. 12.2. Pure bending buckling mode of shells of revolution. 12.3. The buckling of a weakly supported shell of revolution. 12.4. Weakly supported cylindrical and conical shells. 12.5. Weakly supported shells of negative Gaussian curvature. 12.6. Problems and exercises -- 13. Buckling modes localized at an edge. 13.1. Rectangular plates under compression. 13.2. Cylindrical shells and panels under axial compression. 13.3. Cylindrical panel with a weakly supported edge. 13.4. Shallow shell with a weak edge support. 13.5. Modes of shells of revolution localized near an edge. 13.6. Buckling modes with turning points. 13.7. Modes localized near the weakest point on an edge. 13.8. Problems and exercises -- 14. Shells of revolution under general stress state. 14.1. The basic equations and edge effect solutions. 14.2. Buckling with pseudo-bending modes. 14.3. The cases of significant effect of pre-buckling strains. 14.4. The weakest parallel coinciding with an edge. 14.5. Problems and exercises.

Book Asymptotic Theory Of Anisotropic Plates And Shells

Download or read book Asymptotic Theory Of Anisotropic Plates And Shells written by Lenser A Aghalovyan and published by World Scientific. This book was released on 2015-03-03 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: A consistent theory for thin anisotropic layered structures is developed starting from asymptotic analysis of 3D equations in linear elasticity. The consideration is not restricted to the traditional boundary conditions along the faces of the structure expressed in terms of stresses, originating a new type of boundary value problems, which is not governed by the classical Kirchhoff-Love assumptions. More general boundary value problems, in particular related to elastic foundations are also studied.The general asymptotic approach is illustrated by a number of particular problems for elastic and thermoelastic beams and plates. For the latter, the validity of derived approximate theories is investigated by comparison with associated exact solution. The author also develops an asymptotic approach to dynamic analysis of layered media composed of thin layers motivated by modeling of engineering structures under seismic excitation.

Book Elastic Stability of Circular Cylindrical Shells

Download or read book Elastic Stability of Circular Cylindrical Shells written by N. Yamaki and published by Elsevier. This book was released on 1984-02-01 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: The object of this book is to clarify the whole aspect of the basic problems concerning the elastic stability of of circular cylindrical shells under typical loading conditions. The book deals with buckling, postbuckling and initial postbuckling problems under one of the three fundamental loads, that is, torsion, pressure and compression. The emphases are placed on the accurate analysis and comprehensive numeral results for the buckling problem, experimental verification of the theoretical analysis for the postbuckling problem and clarification of the range of applicability of the perturbation method for the analysis of initial postbuckling behaviors and imperfection sensitivity. The problems under typical combined loads as well as the influence of the contained liquid are also clarified.

Book Asymptotic methods in mechanics of solids

Download or read book Asymptotic methods in mechanics of solids written by Svetlana M. Bauer and published by Birkhäuser. This book was released on 2015-05-30 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russian literature not well known for an English speaking reader makes this a indispensable textbook on the topic.

Book Advances In Mechanics Of Solids  In Memory Of Prof E M Haseganu

Download or read book Advances In Mechanics Of Solids In Memory Of Prof E M Haseganu written by Ardeshir Guran and published by World Scientific. This book was released on 2006-08-10 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributions in this volume are written by well-known specialists in the fields of mechanics, materials modeling and analysis. They comprehensively address the core issues and present the latest developments in these and related areas. In particular, the book demonstrates the breadth of current research activity in continuum mechanics. A variety of theoretical, computational, and experimental approaches are reported, covering finite elasticity, vibration and stability, and mechanical modeling. The coverage reflects the extent and impact of the research pursued by Professor Haseganu and her international colleagues.

Book Advances in Solid and Fracture Mechanics

Download or read book Advances in Solid and Fracture Mechanics written by Holm Altenbach and published by Springer Nature. This book was released on 2022-11-08 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of articles reporting the current challenges in solid and fracture mechanics. The book is devoted to the 90th birthday of academician Nikita F. Morozov—a well-known specialist in the field of solid and fracture mechanics.

Book Resolution Of The Twentieth Century Conundrum In Elastic Stability

Download or read book Resolution Of The Twentieth Century Conundrum In Elastic Stability written by Isaac E Elishakoff and published by World Scientific. This book was released on 2014-05-29 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been stability theories developed for beams, plates and shells — the most significant elements in mechanical, aerospace, ocean and marine engineering. For beams and plates, the theoretical and experimental values of buckling loads are in close vicinity. However for thin shells, the experimental predictions do not conform with the theory, due to presence of small geometric imperfections that are deviations from the ideal shape.This fact has been referred to in the literature as ‘embarrassing’, ‘paradoxical’ and ‘perplexing’. Indeed, the popular adage, “In theory there is no difference between theory and practice. In practice there is”, very much applies to thin shells whose experimental buckling loads may constitute a small fraction of the theoretical prediction based on classical linear theory; because in practice, engineers use knockdown factors that are not theoretically substantiated.This book presents a uniform approach that tames this prima-donna-like and capricious behavior of structures that has been dubbed the ‘imperfection sensitivity’ — thus resolving the conundrum that has occupied the best minds of elastic stability throughout the twentieth century.

Book Asymptotic Methods in Mechanics

Download or read book Asymptotic Methods in Mechanics written by RŽmi Vaillancourt and published by American Mathematical Soc.. This book was released on 1993-12-21 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic methods constitute an important area of both pure and applied mathematics and have applications to a vast array of problems. This collection of papers is devoted to asymptotic methods applied to mechanical problems, primarily thin structure problems. The first section presents a survey of asymptotic methods and a review of the literature, including the considerable body of Russian works in this area. This part may be used as a reference book or as a textbook for advanced undergraduate or graduate students in mathematics or engineering. The second part presents original papers containing new results. Among the key features of the book are its analysis of the general theory of asymptotic integration with applications to the theory of thin shells and plates, and new results about the local forms of vibrations and buckling of thin shells which have not yet made their way into other monographs on this subject.

Book Theory of Elastic Thin Shells

Download or read book Theory of Elastic Thin Shells written by A. L. Gol'Denveizer and published by Elsevier. This book was released on 2014-05-15 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is devoted to the membrane theory--the most widely used approximate method of analysis of shells that was formulated at approximately the same time as the more general bending theory. In Part III methods of analysis of circular cylindrical shells with the aid of trigonometric series are considered. Part IV is essentially mathematical in character and its purpose is to justify the approximate methods of shell analysis. In Part V approximate methods of analysis of shells are formulated.

Book Mechanics of laminated Composite doubly curvel shell structures

Download or read book Mechanics of laminated Composite doubly curvel shell structures written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2014-03-01 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This manuscript comes from the experience gained over ten years of study and research on shell structures and on the Generalized Differential Quadrature method. The title, Mechanics of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials through the application of the Differential Quadrature (DQ) technique. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally Graded Materials” (FGMs). They are non-homogeneous materials, characterized by a continuous variation of the mechanical properties through a particular direction. The GDQ numerical solution is compared, not only with literature results, but also with the ones supplied and obtained through the use of different structural codes based on the Finite Element Method (FEM). Furthermore, an advanced version of GDQ method is also presented. This methodology is termed Strong Formulation Finite Element Method (SFEM) because it employs the strong form of the differential system of equations at the master element level and the mapping technique, proper of FEM. The connectivity between two elements is enforced through compatibility conditions.

Book Localized Dynamics of Thin Walled Shells

Download or read book Localized Dynamics of Thin Walled Shells written by Gennadi I. Mikhasev and published by CRC Press. This book was released on 2020-04-17 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Localized Dynamics of Thin-Walled Shells focuses on localized vibrations and waves in thin-walled structures with variable geometrical and physical characteristics. It emphasizes novel asymptotic methods for solving boundary-value problems for dynamic equations in the shell theory, in the form of functions which are highly localized near both fixed and moving lines/points on the shell surface. Features First-of-its-kind work, synthesizing knowledge of the localization of vibrations and waves in thin-walled shells with a mathematical tool to study them Suitable for researchers working on the dynamics of thin shells and also as supplementary reading for undergraduates studying asymptotic methods Offers detailed analysis of wave processes in shells with varying geometric and physical parameters

Book Recent Developments in the Theory of Shells

Download or read book Recent Developments in the Theory of Shells written by Holm Altenbach and published by Springer Nature. This book was released on 2019-09-25 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book commemorates the 80th birthday of Prof. W. Pietraszkiewicz, a prominent specialist in the field of general shell theory. Reflecting Prof. Pietraszkiewicz’s focus, the respective papers address a range of current problems in the theory of shells. In addition, they present other structural mechanics problems involving dimension-reduced models. Lastly, several applications are discussed, including material models for such dimension-reduced structures.

Book Mathematical Elasticity

Download or read book Mathematical Elasticity written by Philippe G. Ciarlet and published by SIAM. This book was released on 2022-01-22 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of Theory of Shells, the third book of a three-volume set, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. The book also shows how asymptotic methods justify nonlinear elastic shell theories and gives a detailed presentation of the Koiter equations for a nonlinearly elastic shell. An extended preface and extensive bibliography have been added to highlight the progress that has been made since the volume’s original publication. While each one of the three volumes is self-contained, together the Mathematical Elasticity set provides the only modern treatise on elasticity; introduces contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells; and contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.

Book Recent Approaches in the Theory of Plates and Plate Like Structures

Download or read book Recent Approaches in the Theory of Plates and Plate Like Structures written by Holm Altenbach and published by Springer Nature. This book was released on 2022-01-01 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the various approaches in establishment the basic equations of one- and two-dimensional structural elements. In addition, the boundaries of validity of the theories and the estimation of errors in approximate theories are given. Many contributions contain not only new theories, but also new applications, which makes the book interesting for researcher and graduate students.

Book Thin walled Laminated Structures

Download or read book Thin walled Laminated Structures written by Gennadi I. Mikhasev and published by Springer. This book was released on 2019-04-29 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a theoretical approach that allows the analysis of structures with magnetorheological and electrorheological layers, and shows, with the help of examples, how the mechanical behaviour of thin-walled laminated structures can be influenced. It consists of six chapters: Chapter 1 presents a brief overview of derivation approaches for theories of thin-walled structures, modelling of composites and modelling of laminated and sandwich structures. Chapter 2 describes the equivalent single layer model for thin laminated cylindrical shells, including the special cases of plates and beams. In addition to the classical mechanical properties, it also considers the electrorheological and magnetorheological properties. Chapter 3 presents the elastic buckling of laminated beams, plates, and cylindrical shells, discussing various problems, such as the influence of the boundary conditions, external loading and magnetic fields. It also suggests different approximations for asymptotic methods. Chapter 4 focuses on the free vibrations of elastic laminated beams, plates and cylindrical shells, investigating the influence of the boundary conditions and other factors. Chapter 5 presents the latest results concerning vibration of laminated structures composed of smart materials and discusses in detail the influence of electric and magnetic fields on smart structures. These results provide insights into the optimal design of these structures. Lastly, Chapter 6 features a short appendix presenting asymptotic estimates and series.

Book Shell like Structures

    Book Details:
  • Author : Holm Altenbach
  • Publisher : Springer
  • Release : 2016-08-09
  • ISBN : 3319422774
  • Pages : 293 pages

Download or read book Shell like Structures written by Holm Altenbach and published by Springer. This book was released on 2016-08-09 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:• comprehensive review of the most popular theories of plates and shells,• relations between three-dimensional theories and two-dimensional ones,• presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),• modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,• applications in modeling of non-classical objects like, for example, nanostructures,• presentation of actual numerical tools based on the finite element approach.