Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Download or read book Nonlinear Time Series Analysis written by Holger Kantz and published by Cambridge University Press. This book was released on 2004 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.
Download or read book Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis written by György Terdik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The object of the present work is a systematic statistical analysis of bilinear processes in the frequency domain. The first two chapters are devoted to the basic theory of nonlinear functions of stationary Gaussian processes, Hermite polynomials, cumulants and higher order spectra, multiple Wiener-Itô integrals and finally chaotic Wiener-Itô spectral representation of subordinated processes. There are two chapters for general nonlinear time series problems.
Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Download or read book The Theory and Practice of Econometrics written by George G. Judge and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broadly based graduate-level textbook covers the major models and statistical tools currently used in the practice of econometrics. It examines the classical, the decision theory, and the Bayesian approaches, and contains material on single equation and simultaneous equation econometric models. Includes an extensive reference list for each topic.
Download or read book Nonlinear Time Series Analysis with R written by Ray G. Huffaker and published by Oxford University Press. This book was released on 2017 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their choice of a modelling approach corresponding to reality. The book is targeted to non-mathematicians with limitedknowledge of nonlinear dynamics; in particular, professionals and graduate students in engineering and the biophysical and social sciences. The book makes readers active learners with hands-on computerexperiments in R code directing them through Nonlinear Time Series Analysis (NLTS). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework--condensed from sound empirical practices recommended in the literature--that details a step-by-step procedure for applying NLTS in real-world data diagnostics.
Download or read book Nonlinear Time Series Analysis with R written by Ray Huffaker and published by Oxford University Press. This book was released on 2017-10-20 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians — with limited knowledge of nonlinear dynamics — to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework — condensed from sound empirical practices recommended in the literature — that details a step-by-step procedure for applying NLTS in real-world data diagnostics.
Download or read book Forecasting Structural Time Series Models and the Kalman Filter written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 1990 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Download or read book Nonlinear Time Series Analysis with Applications to Foreign Exchange Rate Volatility written by Christian Hafner and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with the econometric analysis of high frequency financial time series. It emphasizes a new nonparametric approach to volatility models and provides theoretical and empirical comparisons with conventional ARCH models, applied to foreign exchange rates. Nonparametric models are discussed that cope with asymmetry and long memory of volatility as well as heterogeneity of higher conditional moments.
Download or read book Time Series Techniques for Economists written by Terence C. Mills and published by Cambridge University Press. This book was released on 1990 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of time series techniques in economics has become increasingly important, both for forecasting purposes and in the empirical analysis of time series in general. In this book, Terence Mills not only brings together recent research at the frontiers of the subject, but also analyses the areas of most importance to applied economics. It is an up-to-date text which extends the basic techniques of analysis to cover the development of methods that can be used to analyse a wide range of economic problems. The book analyses three basic areas of time series analysis: univariate models, multivariate models, and non-linear models. In each case the basic theory is outlined and then extended to cover recent developments. Particular emphasis is placed on applications of the theory to important areas of applied economics and on the computer software and programs needed to implement the techniques. This book clearly distinguishes itself from its competitors by emphasising the techniques of time series modelling rather than technical aspects such as estimation, and by the breadth of the models considered. It features many detailed real-world examples using a wide range of actual time series. It will be useful to econometricians and specialists in forecasting and finance and accessible to most practitioners in economics and the allied professions.
Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-14 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Download or read book Mathematical Methods in Time Series Analysis and Digital Image Processing written by Rainer Dahlhaus and published by Springer Science & Business Media. This book was released on 2007-12-20 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent and articulate volume summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing. The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences.
Download or read book Time Series Analysis Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.
Download or read book Time Series Analysis Methods and Applications written by and published by Elsevier. This book was released on 2012-05-18 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas
Download or read book Mathematical Statistics Theory and Applications written by and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-05-26 with total page 871 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Econometrics written by Bruce Hansen and published by Princeton University Press. This book was released on 2022-06-28 with total page 1081 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most authoritative and up-to-date core econometrics textbook available Econometrics is the quantitative language of economic theory, analysis, and empirical work, and it has become a cornerstone of graduate economics programs. Econometrics provides graduate and PhD students with an essential introduction to this foundational subject in economics and serves as an invaluable reference for researchers and practitioners. This comprehensive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of econometrics. Covers the full breadth of econometric theory and methods with mathematical rigor while emphasizing intuitive explanations that are accessible to students of all backgrounds Draws on integrated, research-level datasets, provided on an accompanying website Discusses linear econometrics, time series, panel data, nonparametric methods, nonlinear econometric models, and modern machine learning Features hundreds of exercises that enable students to learn by doing Includes in-depth appendices on matrix algebra and useful inequalities and a wealth of real-world examples Can serve as a core textbook for a first-year PhD course in econometrics and as a follow-up to Bruce E. Hansen’s Probability and Statistics for Economists
Download or read book Predictions in Time Series Using Regression Models written by Frantisek Stulajter and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will interest and assist people who are dealing with the problems of predictions of time series in higher education and research. It will greatly assist people who apply time series theory to practical problems in their work and also serve as a textbook for postgraduate students in statistics economics and related subjects.