Download or read book Machine Learning for Signal Processing written by Max A. Little and published by Oxford University Press, USA. This book was released on 2019 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Download or read book Signal Processing and Machine Learning with Applications written by Michael M. Richter and published by Springer. This book was released on 2022-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal processing captures, interprets, describes and manipulates physical phenomena. Mathematics, statistics, probability, and stochastic processes are among the signal processing languages we use to interpret real-world phenomena, model them, and extract useful information. This book presents different kinds of signals humans use and applies them for human machine interaction to communicate. Signal Processing and Machine Learning with Applications presents methods that are used to perform various Machine Learning and Artificial Intelligence tasks in conjunction with their applications. It is organized in three parts: Realms of Signal Processing; Machine Learning and Recognition; and Advanced Applications and Artificial Intelligence. The comprehensive coverage is accompanied by numerous examples, questions with solutions, with historical notes. The book is intended for advanced undergraduate and postgraduate students, researchers and practitioners who are engaged with signal processing, machine learning and the applications.
Download or read book Machine Learning in Signal Processing written by Sudeep Tanwar and published by CRC Press. This book was released on 2021-12-10 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.
Download or read book Machine Intelligence and Signal Analysis written by M. Tanveer and published by Springer. This book was released on 2018-08-07 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.
Download or read book Biomedical Signal Processing and Artificial Intelligence in Healthcare written by Walid A. Zgallai and published by Academic Press. This book was released on 2020-07-29 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of Deep Learning, Neural Networks, and the implications of the expansion of artificial intelligence is covered. Biomedical Images are also introduced and processed, including segmentation, classification, and detection. This book covers different aspects of signals, from the use of hardware and software, and making use of artificial intelligence in problem solving.Dr Zgallai's book has up to date coverage where readers can find the latest information, easily explained, with clear examples and illustrations. The book includes examples on the application of signal and image processing employing artificial intelligence to Alzheimer, Parkinson, ADHD, autism, and sleep disorders, as well as ECG and EEG signals. Developments in Biomedical Engineering and Bioelectronics is a 10-volume series which covers recent developments, trends and advances in this field. Edited by leading academics in the field, and taking a multidisciplinary approach, this series is a forum for cutting-edge, contemporary review articles and contributions from key 'up-and-coming' academics across the full subject area. The series serves a wide audience of university faculty, researchers and students, as well as industry practitioners. - Coverage of the subject area and the latest advances and applications in biomedical signal processing and Artificial Intelligence - Contributions by recognized researchers and field leaders - On-line presentations, tutorials, application and algorithm examples
Download or read book Machine Intelligence and Signal Processing written by Sonali Agarwal and published by Springer Nature. This book was released on 2020-02-25 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).
Download or read book Machine Learning in Bio Signal Analysis and Diagnostic Imaging written by Nilanjan Dey and published by Academic Press. This book was released on 2018-11-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
Download or read book Machine Learning Methods for Signal Image and Speech Processing written by Meerja Akhil Jabbar and published by . This book was released on 2021-11-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The signal processing (SP) landscape has been enriched by recent advances in artificial intelligence (AI) and machine learning (ML), yielding new tools for signal estimation, classification, prediction, and manipulation. Layered signal representations, nonlinear function approximation and nonlinear signal prediction are now feasible at very large scale in both dimensionality and data size. These are leading to significant performance gains in a variety of long-standing problem domains like speech and image analysis as well as providing the ability to construct new classes of nonlinear functions (e.g., fusion, nonlinear filtering). This book will help academics, researchers, developers, graduate and undergraduate students to comprehend complex SP data across a wide range of topical application areas such as social multimedia data collected from social media networks, medical imaging data, data from Covid tests, etc. This book focuses on AI utilization in the speech, image, communications and virtual reality domains.
Download or read book Intelligent Systems and Signal Processing in Power Engineering written by Abhisek Ukil and published by Springer Science & Business Media. This book was released on 2007-09-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly experienced author sets out to build a bridge between two inter-disciplinary power engineering practices. The book looks into two major fields used in modern power systems: intelligent systems and the signal processing. The intelligent systems section comprises fuzzy logic, neural network and support vector machine. The author looks at relevant theories on the topics without assuming much particular background. Following the theoretical basics, he studies their applications in various problems in power engineering, like, load forecasting, phase balancing, or disturbance analysis.
Download or read book Intelligent Speech Signal Processing written by Nilanjan Dey and published by Academic Press. This book was released on 2019-04-02 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.
Download or read book Advances in Signal Processing and Intelligent Recognition Systems written by Sabu M. Thampi and published by Springer Nature. This book was released on 2020-04-30 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Symposium on Advances in Signal Processing and Intelligent Recognition Systems, SIRS 2019, held in Trivandrum, India, in December 2019. The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 63 submissions. The papers cover wide research fields including information retrieval, human-computer interaction (HCI), information extraction, speech recognition.
Download or read book Smart Antennas and Electromagnetic Signal Processing in Advanced Wireless Technology written by Paul R.P. Hoole and published by CRC Press. This book was released on 2022-09-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses the current demand for a scientific approach to advanced wireless technology and its future developments. It gives a clear presentation of both antennas and adaptive signal processing which is what makes antennas powerful, maneuverable and necessary for advanced wireless technology. The book presents electromagnetic signal processing techniques that both control the antenna beam and track the moving station, which is required for effective, fast, dynamic beamforming. The first part of the book presents a comprehensive description and analysis of basic antenna theory, starting from short dipole antennas to array antennas. This section also includes important concepts related to antenna parameters, electromagnetic wave propagation, the Friis equation, the radar equation and wave reflection and transmission through media. The second part of the book focuses on smart antennas, commencing from a look at the traditional approach to beamforming before getting into the details of smart antennas. Complete derivation and description of the techniques for electromagnetic field signal processing techniques for adaptive beamforming are also presented. Artificial Intelligence (AI) driven beamforming is presented using computationally fast and low-memory demanding technique for AI beamforming is presented with the different excitation functions available. A novel method for fast, low memory and accurate, maneuverable single beam generation is presented, as well as other methods for beamforming with fewer elements along with a simple method for tracking the mobile antenna and station. In this section, for completeness, the use of antenna signal processing for synthetic aperture techniques for imaging is also presented, specifically the Inverse Synthetic Aperture Imaging technique. The third part of the book presents technological aspects of advanced wireless technology, including the 5G wireless system and the various devices needed to construct it. While the books’ main emphasis is theoretical understanding and design, it includes applications, and legal matters are also presented.
Download or read book Digital Signal Processing in Audio and Acoustical Engineering written by Francis F. Li and published by CRC Press. This book was released on 2019-04-02 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with essential maths, fundamentals of signals and systems, and classical concepts of DSP, this book presents, from an application-oriented perspective, modern concepts and methods of DSP including machine learning for audio acoustics and engineering. Content highlights include but are not limited to room acoustic parameter measurements, filter design, codecs, machine learning for audio pattern recognition and machine audition, spatial audio, array technologies and hearing aids. Some research outcomes are fed into book as worked examples. As a research informed text, the book attempts to present DSP and machine learning from a new and more relevant angle to acousticians and audio engineers. Some MATLAB® codes or frameworks of algorithms are given as downloads available on the CRC Press website. Suggested exploration and mini project ideas are given for "proof of concept" type of exercises and directions for further study and investigation. The book is intended for researchers, professionals, and senior year students in the field of audio acoustics.
Download or read book Digital Signal Processing with Kernel Methods written by Jose Luis Rojo-Alvarez and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.
Download or read book Signal Processing and Machine Learning for Brain Machine Interfaces written by Toshihisa Tanaka and published by Institution of Engineering and Technology. This book was released on 2018-09-13 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions.
Download or read book Geometry of Deep Learning written by Jong Chul Ye and published by Springer Nature. This book was released on 2022-01-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.
Download or read book Multimedia Signal Processing written by Saeed V. Vaseghi and published by John Wiley & Sons. This book was released on 2007-10-22 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multimedia Signal Processing is a comprehensive and accessible text to the theory and applications of digital signal processing (DSP). The applications of DSP are pervasive and include multimedia systems, cellular communication, adaptive network management, radar, pattern recognition, medical signal processing, financial data forecasting, artificial intelligence, decision making, control systems and search engines. This book is organised in to three major parts making it a coherent and structured presentation of the theory and applications of digital signal processing. A range of important topics are covered in basic signal processing, model-based statistical signal processing and their applications. Part 1: Basic Digital Signal Processing gives an introduction to the topic, discussing sampling and quantization, Fourier analysis and synthesis, Z-transform, and digital filters. Part 2: Model-based Signal Processing covers probability and information models, Bayesian inference, Wiener filter, adaptive filters, linear prediction hidden Markov models and independent component analysis. Part 3: Applications of Signal Processing in Speech, Music and Telecommunications explains the topics of speech and music processing, echo cancellation, deconvolution and channel equalization, and mobile communication signal processing. Covers music signal processing, explains the anatomy and psychoacoustics of hearing and the design of MP3 music coder Examines speech processing technology including speech models, speech coding for mobile phones and speech recognition Covers single-input and multiple-inputs denoising methods, bandwidth extension and the recovery of lost speech packets in applications such as voice over IP (VoIP) Illustrated throughout, including numerous solved problems, Matlab experiments and demonstrations Companion website features Matlab and C++ programs with electronic copies of all figures. This book is ideal for researchers, postgraduates and senior undergraduates in the fields of digital signal processing, telecommunications and statistical data analysis. It will also be a valuable text to professional engineers in telecommunications and audio and signal processing industries.