EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aqueous RAFT Synthesis of Stimuli responsive  Amphiphilic Block Copolymers and Self assembly Behavior in Solution and Incorporation Into LBL Films

Download or read book Aqueous RAFT Synthesis of Stimuli responsive Amphiphilic Block Copolymers and Self assembly Behavior in Solution and Incorporation Into LBL Films written by Matthew Grady Kellum and published by . This book was released on 2010 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis and Characterization of Stimuli Responsive Block Copolymers  Self assembly Behavior and Applications

Download or read book Synthesis and Characterization of Stimuli Responsive Block Copolymers Self assembly Behavior and Applications written by Michael Duane Determan and published by . This book was released on 2006 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water-soluble stimuli responsive block copolymers are a rapidly emerging class of materials with great potential in biomedical and technological applications. In this work a novel class of pentablock copolymers are synthesized via atom transfer radical polymerization techniques and their stimuli-responsive self-assembly properties are characterized. Aqueous solutions of these materials are observed to form micelles and hydrogels in response to changes in both temperature and pH. Cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron and X-ray scattering (SANS and SAXS) techniques are used to investigate the nanoscale structures formed by these pentablock copolymers in solution. The gel structure and mechanical properties are investigated with SANS and rheological techniques. The multi-responsive properties of these materials are utilized to formulate a stimuli responsive drug delivery formulation that exhibits thermoreversible gelation and pH dependent release rate of model drugs.

Book Synthesis and Solution Behavior of Doubly Responsive Hydrophilic Block Copolymers

Download or read book Synthesis and Solution Behavior of Doubly Responsive Hydrophilic Block Copolymers written by Xueguang Jiang and published by . This book was released on 2010 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents the synthesis of stimuli-sensitive hydrophilic polymers, particularly doubly responsive hydrophilic block copolymers, by controlled radical polymerizations and the study of their solution behavior in water. By incorporating a small amount of stimuli-responsive groups into the thermosensitive block of a hydrophilic block copolymer, the lower critical solution temperature (LCST) of the thermosensitive block can be tuned by a stimulus and multiple micellization/dissociation transitions can be achieved by combining two external triggers. Chapter 1 describes the synthesis and thermosensitive properties of two new watersoluble polystyrenics with a short oligo(ethyl glycol) pendant from each repeat unit and the study of hydrophobic end group effects on cloud points of thermosensitive polystyrenics. Well-defined polymers were prepared from monomer-based initiators via nitroxide-mediated polymerization and the alkoxyamine end groups were removed by tri(n-butyl)tin hydride, yielding thermoresponsive polystyrenics with essentially no end groups. The results showed that hydrophobic end groups could significantly change the cloud points and the molecular weight dependences of cloud points of polystyrenics. Chapter 2 presents the synthesis of thermo- and light-sensitive hydrophilic block copolymers, poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate), and their responsive behavior in dilute aqueous solutions. Dynamic light scattering and fluorescence spectroscopy studies showed that these copolymers were molecularly dissolved in water at lower temperatures and self-assembled into micelles at temperatures above the LCST of the thermosensitive block. Upon UV irradiation, the o-nitrobenzyl group was cleaved and the LCST of the thermosensitive block was increased, causing the dissociation of micelles into unimers. The resultant copolymers underwent thermo-induced reversible micellization at higher temperatures. Chapter 3 describes multiple micellization/dissociation transitions of thermo- and pH-sensitive hydrophilic block copolymers, poly(ethylene oxide)-b-poly(methoxydi(ethylene glycol) methacrylate-co-methacrylic acid), in response to temperature and pH changes. The LCST of the thermosensitive block can be reversibly tuned and precisely controlled by solution pH. Chapter 4 presents the study on multiple sol-gel-sol transitions of a 20.0 wt % aqueous solution of poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) induced by temperature changes and UV irradiation. The solution underwent thermo-induced sol-gel-sol transitions. Upon UV irradiation to dissociate micelles, the gel was transformed into a free-flowing liquid, which upon heating underwent sol-gel-sol transitions again.

Book Amphiphilic Block Copolymers

Download or read book Amphiphilic Block Copolymers written by P. Alexandridis and published by Elsevier. This book was released on 2000-10-18 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the belief of the editors of this book that the recognition of block copolymers as being amphiphilic molecules and sharing common features with other well-studied amphiphiles will prove beneficial to both the surfactant and the polymer communities. An aim of this book is to bridge the two communities and cross-fertilise the different fields. To this end, leading researchers in the field of amphiphilic block copolymer self-assembly, some having a background in surfactant chemistry, and others with polymer physics roots, have agreed to join forces and contribute to this book.The book consists of four entities. The first part discusses theoretical considerations behind the block copolymer self-assembly in solution and in the melt. The second part provides case studies of self-assembly in different classes of block copolymers (e.g., polyethers, polyelectrolytes) and in different environments (e.g., in water, in non-aqueous solvents, or in the absence of solvents). The third part presents experimental tools, ranging from static (e.g., small angle neutron scattering) to dynamic (e.g., rheology), which can prove valuable in the characterization of block copolymer self-assemblies. The fourth part offers a sampling of current applications of block copolymers in, e.g., formulations, pharmaceutics, and separations, applications which are based on the unique self-assembly properties of block copolymers.

Book New Hydrogel Forming Thermo responsive Block Copolymers of Increasing Structural Complexity

Download or read book New Hydrogel Forming Thermo responsive Block Copolymers of Increasing Structural Complexity written by Anna Miasnikova and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into "smart" hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. %. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. % at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, "smart" viscosifiers and gelators displaying tunable gelling and mechanical properties.

Book Synthesis and Self assembly of Multiple Thermoresponsive Amphiphilic Block Copolymers

Download or read book Synthesis and Self assembly of Multiple Thermoresponsive Amphiphilic Block Copolymers written by Jan Weiss and published by . This book was released on 2011 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step.

Book Synthesis of  dye labelled Thermoresponsive Block Copolymers by Raft Polymerization

Download or read book Synthesis of dye labelled Thermoresponsive Block Copolymers by Raft Polymerization written by Mariana Beija and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Double hydrophilic diblock copolymers comprising a thermoresponsive block have gained increasing attention due to their capability of self-assembling in micelles by a temperature change. However, very few fluorescence studies were devoted to investigate their conformation and dynamics both at the air-water interface and in aqueous solutions. In this work, block copolymers composed of a thermoresponsive block of N,N- iethylacrylamide (DEA) and a hydrophilic block of N,N-dimethylacrylamide (DMA) or a reactive block [statistical copolymer of DMA and N-acryloxysuccinimide (NAS)] were prepared by RAFT polymerization. These block copolymers were functionalized at the hydrophilic chain-end by a Rhodamine B or Malachite Green dye using either a pre- or a post-polymerization strategy. In the first case, Rhodamine B and Malachite Green amino derivatives were synthesized for the preparation of dyelabelled chain transfer agent (CTA), which led directly the alpha-dye-labelled block copolymers. Alternatively, the block copolymers were prepared using a precursor CTA and further functionalized with the dye amino derivative. The thermoresponsive behaviour of these polymers and of amphiphilic block copolymers of DEA and N-decylacrylamide was studied at the air-water interface and in Langmuir-Blodgett films using AFM and confocal fluorescence microscopy. Fluorescence emission and anisotropy, light scattering and 1H NMR studies were performed to investigate their behaviour in aqueous solutions.

Book Self asembly and Stimuli responsive Properties of Amphiphilic Self immolative Block Co polymers

Download or read book Self asembly and Stimuli responsive Properties of Amphiphilic Self immolative Block Co polymers written by Thomas Mackenzie Gungor and published by . This book was released on 2015 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, degradable polymers have become increasingly researched for their applications in drug delivery systems, adhesives, and tissue engineering. Self-immolative polymers (SIPs) are of particular utility due to predictable end-to-end backbone depolymerization after a stimuli-responsive end-cap cleavage. There are examples of incorporating a hydrophobic SIP into an amphiphilic block-copolymer, followed by selfassembly in aqueous media forming various nanoparticle morphologies. However, their selfassembly behaviour has not been described in detail, and there are no general synthetic methods that allow for their synthesis with good control over the relative hydrophilic block ratio, the major factor controlling their morphology. This thesis presents the synthesis of a self-immolative poly(carbamate) with a photo-active end-cap linked to a poly(ethylene)glycol (PEG) hydrophilic block and an attempt at poly(2-(N, Ndimethylamine)- ethyl-methacrylate) (PDMAEMA). These copolymers were self-assembled in aqueous media to form vesicles, micelles and inverted micelles. These nanoparticles were loaded with nile red, and their degradation was monitored by the release of the cargo.

Book Mambo mortale

    Book Details:
  • Author : Landesstelle Jugendschutz
  • Publisher :
  • Release : 1990
  • ISBN :
  • Pages : 54 pages

Download or read book Mambo mortale written by Landesstelle Jugendschutz and published by . This book was released on 1990 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis  Characterization and Self assembly of Amphiphilic Block Copolymers

Download or read book Synthesis Characterization and Self assembly of Amphiphilic Block Copolymers written by Xiaojun Wang and published by . This book was released on 2012 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents a review on state-of-the-art research of well-defined charged block copolymers, including synthesis, characterization, bulk morphology and self-assembly in aqueous solution of amphiphilic block polyelectrolytes. In Chapter 1, as a general introduction, experimental observations and theoretical calculations devoted towards understanding morphological behavior in charged block copolymer systems are reviewed along with some of the new emerging research directions. Further investigation of charged systems is urged in order to fully understand their morphological behavior and to directly target structures for the tremendous potential in technological applications. Following this background, in Chapters 2, 3, 4 and 5 are presented the design and synthesis of a series of well-defined block copolymers composed of charged and neutral block copolymers with full characterization: sulfonated polystyrene-b-fluorinated polyisoprene (sPS-b-fPI) and polystyrene-b-sulfonated poly(1,3-cyclohexadiene) (PS-b-sPCHD). Their bulk morphological behaviors in melts and self-assembly of sPS-b-fPI, PS-b-sPCHD in water were investigated. Some unique behaviors of sPS-b-fPI were discovered. The mechanisms for formation of novel nanostructures in aqueous solution are discussed in details in Chapter 4. Spherical and vesicular structures were formed from strong electrolyte block copolymers, e.g. PS-bsPCHD. Detailed light scattering and transmission electron microscopy were applied to characterize these structures. The abnormal formation of vesicles as well as microstructure effects on self-assembly is discussed in Chapter 5. In Chapter 6, we describe the successful synthesis of a well-defined acid-based block copolymers containing polyisoprene while maintaining the integrity of the functionality (double bonds) of polyisoprene. A general purification method is also presented in order to remove homo polyisoprene, polystyrene, and PS-b-PI in the di-, and tri-block copolymers. The self-assembly of PS-b-PI-b-PAA triblock terpolymers was studied in order to form multicompartmental structures in aqueous environments. In the last Chapter 7, detailed synthesis and characterization of a novel conjugate: poly(L-leucine) grafted hyaluronan (HA) (HA-g-PLeu) are presented. This work describes a new method to synthesize HA-g-PLeu via a "grafting onto" strategy. Due to the amphiphilic nature of this graft copolymers, a "local network" formed by self-assembly which was characterized by atomic force microscopy and light scattering. The secondary structure of the polypeptide was revealed by circular dichroism.

Book Self assembly Behavior in Hydrophilic Block Copolymers

Download or read book Self assembly Behavior in Hydrophilic Block Copolymers written by Clara Valverde Serrano and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers are receiving increasing attention in the literature. Reports on amphiphilic block copolymers have now established the basis of their self-assembly behavior: aggregate sizes, morphologies and stability can be explained from the absolute and relative block lengths, the nature of the blocks, the architecture and also solvent selectiveness. In water, self-assembly of amphiphilic block copolymers is assumed to be driven by the hydrophobic. The motivation of this thesis is to study the influence on the self-assembly in water of A b B type block copolymers (with A hydrophilic) of the variation of the hydrophilicity of B from non-soluble (hydrophobic) to totally soluble (hydrophilic). Glucose-modified polybutadiene-block-poly(N-isopropylacrylamide) copolymers were prepared and their self-assembly behavior in water studied. The copolymers formed vesicles with an asymmetric membrane with a glycosylated exterior and poly(N-isopropylacrylamide) on the inside. Above the low critical solution temperature (LCST) of poly(N-isopropylacrylamide), the structure collapsed into micelles with a hydrophobic PNIPAM core and glycosylated exterior. This collapse was found to be reversible. As a result, the structures showed a temperature-dependent interaction with L-lectin proteins and were shown to be able to encapsulate organic molecules. Several families of double hydrophilic block copolymers (DHBC) were prepared. The blocks of these copolymers were biopolymers or polymer chimeras used in aqueous two-phase partition systems. Copolymers based on dextran and poly(ethylene glycol) blocks were able to form aggregates in water. Dex6500-b-PEG5500 copolymer spontaneously formed vesicles with PEG as the "less hydrophilic" barrier and dextran as the solubilizing block. The aggregates were found to be insensitive to the polymer's architecture and concentration (in the dilute range) and only mildly sensitive to temperature. Variation of the block length, yielded different morphologies. A longer PEG chain seemed to promote more curved aggregates following the inverse trend usually observed in amphiphilic block copolymers. A shorter dextran promoted vesicular structures as usually observed for the amphiphilic counterparts. The linking function was shown to have an influence of the morphology but not on the self-assembly capability in itself. The vesicles formed by dex6500-b-PEG5500 showed slow kinetics of clustering in the presence of Con A lectin. In addition both dex6500-b-PEG5500 and its crosslinked derivative were able to encapsulate fluorescent dyes. Two additional dextran-based copolymers were synthesized, dextran-b-poly(vinyl alcohol) and dextran-b-poly(vinyl pyrrolidone). The study of their self-assembly allowed to conclude that aqueous two-phase systems (ATPS) is a valid source of inspiration to conceive DHBCs capable of self-assembling. In the second part the principle was extended to polypeptide systems with the synthesis of a poly(N-hydroxyethylglutamine)-block-poly(ethylene glycol) copolymer. The copolymer that had been previously reported to have emulsifying properties was able to form vesicles by direct dissolution of the solid in water. Last, a series of thermoresponsive copolymers were prepared, dextran-b-PNIPAMm. These polymers formed aggregates below the LCST. Their structure could not be unambiguously elucidated but seemed to correspond to vesicles. Above the LCST, the collapse of the PNIPAM chains induced the formation of stable objects of several hundreds of nanometers in radius that evolved with increasing temperature. The cooling of these solution below LCST restored the initial aggregates. This self-assembly of DHBC outside any stimuli of pH, ionic strength, or temperature has only rarely been described in the literature. This work constituted the first formal attempt to frame the phenomenon. Two reasons were accounted for the self-assembly of such systems: incompatibility of the polymer pairs forming the two blocks (enthalpic) and a considerable solubility difference (enthalpic and entropic). The entropic contribution to the positive Gibbs free energy of mixing is believed to arise from the same loss of conformational entropy that is responsible for "the hydrophobic effect" but driven by a competition for water of the two blocks. In that sense this phenomenon should be described as the "hydrophilic effect".

Book Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

Download or read book Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable moieties depends on the pH of the solution. Polymers with polyzwitterions, anions and cations have been shown to exhibit pH responsive self assembly. Other stimuli responsive polymers include glucose sensitive polymers, calcium ion-sensitive polymers and so on. Progress in living radical polymerization (LRP) methods [10] has made it possible for the facile synthesis of these block copolymer systems with controlled molecular weights and well defined architectures. The overall theme of this work is to develop novel smart block copolymers for biomineralization and biomedical applications. Synthesis and characterization of self-assembling thermoreversible ionic block copolymers as templates in biomimetic nanocomposite synthesis using a bottom-up approach is a novel contribution in this respect. Further, we have extended these families of copolymers to include block copolymer-peptide conjugates to enhance biological specificity. Future directions on this work will focus on enhancing the polymer templating properties for biomineralization by expanding the family of block copolymers with organic polypeptides and biological polypeptide scaffolds as well as a detailed understanding of the polymer-inorganic nanocomposites at the molecular level using small angle scattering analysis. Glucose responsive polymer hydrogels for drug delivery, polymer-ligand conjugates for non-viral therapy and thermoresponsive injectable photocrosslinkable hydrogels for posttraumatic arthritis cartilage healing are other applications of these novel copolymers synthesized in our work.

Book Poly lactide  based Amphiphilic Block Copolymers

Download or read book Poly lactide based Amphiphilic Block Copolymers written by Sebastian Noack and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to its bioavailability and (bio)degradability, poly(lactide) (PLA) is an interesting polymer that is already being used as packaging material, surgical seam, and drug delivery system. Dependent on various parameters such as polymer composition, amphiphilicity, sample preparation, and the enantiomeric purity of lactide, PLA in an amphiphilic block copolymer can affect the self-assembly behavior dramatically. However, sizes and shapes of aggregates have a critical effect on the interactions between biological and drug delivery systems, where the general understanding of these polymers and their ability to influence self-assembly is of significant interest in science. The first part of this thesis describes the synthesis and study of a series of linear poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)-based amphiphilic block copolymers with varying PLA (hydrophobic), and poly(ethylene glycol) (PEG) (hydrophilic) chain lengths and different block copolymer sequences (PEG-PLA and PLA-PEG). ...