EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approaches to Fabricating High efficiency Ultra thin CdTe Solar Cells

Download or read book Approaches to Fabricating High efficiency Ultra thin CdTe Solar Cells written by Wei Xia and published by . This book was released on 2012 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This thesis is an investigation of the fabrication, characterization and performance of high-efficiency and ultra-thin CdTe solar cells with an aim of reducing the material usage and cell manufacturing cost. Several approaches have been successfully carried out to directly or indirectly improve the device performance. Major achievements are listed below: 1) A close-spaced sublimation (CSS) process with an improved control of the deposition temperature-time profile was developed to fabricate high-quality ultra-thin CdTe films. Three key factors in the CSS process including oxygen pressure, substrate temperature and thermal etch duration were optimized. 2) A two-stage post-deposition treatment including a high temperature annealing (HTA) followed by a vaporous cadmium chloride treatment (VCC) was developed and optimized for the growth of high-quality CdTe films. The effects of HTA and VCC on ultra-thin CdTe solar cells were revealed by a combination of characterization techniques, including photoluminescence. 3) In a collaborative effort two new back contact buffers, MoOx and Te/Cu, were identified and applied in ultra-thin CdTe solar cells. Substitution of a conventional acid etching method with the new back contact buffers was found to enhance the cell efficiency from ~10% to ~13.5%. Moreover, the new buffers improved the reproducibility of cell fabrication. A low-resistance electrical back contact based on the Te/Cu buffer and Ni as electrode was developed. A thermal activation process was found necessary to promote ohmic contact formation. Cu diffusion into the Te layer and CdTe bulk layer occurred during the thermal activation process and must be controlled to prevent excessive diffusion into the CdS/CdTe junction. The effects of Cu concentration and Te thickness on device performance and cell stability were systematically investigated and a cell efficiency as high as ~15% with good stability has been achieved using an optimized Te/Cu buffer. 4) A novel vaporous zinc chloride treatment was developed for the formation of Cd1xZnxS from CdS films. Compared with conventional fabrication methods, the VZC method features simple setup and operation and is capable of producing Cd1xZnxS films with a homogenous structure. The Zn to Cd doping ratio in Cd1−xZnxS can be easily controlled by adjusting the process parameters. By replacing CdS with a more transparent Cd1−xZnxS as the window layer, CdTe solar cells with a higher (12-14%) short-circuit current, Jsc, have been demonstrated"--Page v-vi.

Book High Efficiency Ultra Thin Cadmium Telluride  CdTe  Solar Cells

Download or read book High Efficiency Ultra Thin Cadmium Telluride CdTe Solar Cells written by Nowshad Amin and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film cadmium telluride absorbers with cadmium sulphide hetero-junction partner are promising candidates for high efficiency low cost solutions of solar energy harvesting devices. These devices have band gaps well-suited for effective absorption of sunlight. Most importantly, the materials used in these devices can be deposited in a variety of industry-friendly ways, so that the cost associated with manufacturing is generally lower than other available technologies. Although poly-crystalline CdS has been found to be the best suited heterojunction partner for CdTe solar cell, the conventional polycrystalline CdS/CdTe cell has few issues that limit device performance. In order to overcome these problems, this study proposes the introduction of poly-CdS to amorphous oxygenated CdS (a-CdS: O) as window layer. The a-CdS: O window material has higher optical band gap (2.5-3.1 eV), better lattice match with CdTe absorber materials and reduced inter-diffusion tendency of CdS and CdTe layers. This book systematically demonstrates the conversion process of poly CdS to a-CdS: O and develops a strategy for the fabrication of suitable a-CdS: O layer to be applied in CdTe solar ce

Book Fabrication of Ultra Thin CdS CdTe Solar Cells by Magnetron Sputtering

Download or read book Fabrication of Ultra Thin CdS CdTe Solar Cells by Magnetron Sputtering written by Victor Plotnikov and published by . This book was released on 2009 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: CdTe is a nearly perfect absorber material for second generation polycrystalline solar cells because the bandgap closely matches the peak of the solar spectrum, relatively high absorption coefficient and good electronic properties in the polycrystalline phase. Fabricating high-efficiency CdS/CdTe solar cells with an ultra-thin absorber layer is a challenging yet highly desirable step in improving CdTe technology. Most of today's CdTe solar cells utilize an absorber layer which is about 2.5 microns to 8 microns thick. Thinning this layer down typically results in poorer cell performance due to shunting, incomplete photon absorption, fully depleted CdTe layer or interference between the main and the back contact junction when the CdTe layer thickness approaches a certain limit. While some of these losses are fundamental, others can be minimized by careful optimization of the fabrication steps. In this dissertation I present the results of such optimization. Magnetron sputtered CdS/CdTe solar cells with the absorber layer thicknesses from 2.6 microns to 0.3 microns were studied. The deposition process itself and all the post-deposition parameters such as the CdCl2 treatment, thickness of the Cu layer in the thermally evaporated Cu/Au back contact, and the back contact thermal activation/diffusion time for a given CdTe layer thickness were optimized to achieve the top performance for the cell of a given thickness. 13.5 % efficiency cells with 2.5 microns CdTe, 12% cells with 1 microns CdTe, 9.7% cells with 0.5 microns CdTe and 6.7% with 0.3 microns CdTe were fabricated.

Book Solar Cells and Modules

    Book Details:
  • Author : Arvind Shah
  • Publisher : Springer Nature
  • Release : 2020-07-16
  • ISBN : 3030464873
  • Pages : 357 pages

Download or read book Solar Cells and Modules written by Arvind Shah and published by Springer Nature. This book was released on 2020-07-16 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

Book Development of CdTe Thin Film Solar Cells on Flexible Foil Substrates

Download or read book Development of CdTe Thin Film Solar Cells on Flexible Foil Substrates written by Deidra Ranel Hodges and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Cadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal band gap of 1.45 eV, its high optical absorption coefficient and availability of various device fabrication methods. Superstrate CdTe solar cells fabricated on glass have to-date exhibited efficiencies of 16.5%. Work on substrate devices has been limited due to difficulties associated with the formation of an ohmic back contact with CdTe. The most promising approach used to-date is based on the use of an interlayer between the CdTe and a metal electrode, an approach that is believed to yield a pseudo-ohmic contact. This research investigates the use of ZnTe and Sb2Te3 as the interlayer, in the development of efficient back contacts. Excellent adhesion and minimum stress are also required of a CdTe thin film solar cell device on a flexible stainless steel (SS) foil substrate. Foil substrate curvature, flaking, delamination and adhesion as a result of compressive strain due to the coefficient of thermal expansion (CTE) mismatch between the flexible SS foil substrate and the solar cell films have been studied. A potential problem with the use of a SS foil as the substrate is the diffusion of iron (Fe), chromium (Cr) and other elemental impurities into the layers of the solar cell device structure during high temperature processing. A diffusion barrier limiting the out diffusion of these substrate elements is being investigated in this study. Silicon nitride (Si3N4) films deposited on SS foils are being investigated as the barrier layer, to reduce or inhibit the diffusion of substrate impurities into the solar cell. Thin film CdTe solar cells have been fabricated and characterized by AFM, XRD, SEM, ASTM D3359-08 tape test, current-voltage (I-V) and spectral measurements. My individual contributions to this work include the Molybdenum (Mo) development, the adhesion studies, the silicon nitride (Si3N4) barrier studies, and EDS and SEM lines measurements and analysis of substrate out-diffused impurities. The rest of my colleagues focused on the development of CdTe, CdS, ZnTe, the CdCl2 heat treatment, and other back contact interlayer materials.

Book Recent Advances in Thin Film Photovoltaics

Download or read book Recent Advances in Thin Film Photovoltaics written by Udai P. Singh and published by Springer Nature. This book was released on 2022-09-02 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Book Coatings and Thin Film Technologies

Download or read book Coatings and Thin Film Technologies written by Jaime Andres Perez Taborda and published by BoD – Books on Demand. This book was released on 2019-01-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Development of Deposition and Characterization Systems for Thin Film Solar Cells

Download or read book Development of Deposition and Characterization Systems for Thin Film Solar Cells written by Alexander J. Cimaroli and published by . This book was released on 2016 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic (PV) devices are becoming more important due to a number of economic and environmental factors. PV research relies on the ability to quickly fabricate and characterize these devices. While there are a number of deposition methods that are available in a laboratory setting, they are not necessarily able to be scaled to provide high throughput in a commercial setting. A close-space sublimation (CSS) system was developed to provide a means of depositing thin films in a very controlled and scalable manner. Its viability was explored by using it to deposit the absorber layer in Zn3P2 and CdTe solar cell devices. Excellent control over morphology and growth conditions and a high level of repeatability was demonstrated in the study of textured Zn3P2 thin films. However, some limitations imposed by the structure of Zn3P2-based PV devices showed that CSS may not be the best approach for depositing Zn3P2 thin films. Despite the inability to make Zn3P2 solar cell devices, high efficiency CdTe solar cells were fabricated using CSS. With the introduction of Perovskite-based solar cell devices, the viability of data collected from conventional J-V measurements was questioned due to the J-V hysteresis that Perovskite devices exhibited. New methods of solar cell characterization were developed in order to accurately and quickly assess the performance of hysteretic PV devices. Both J-V measurements and steady-state efficiency measurements are prone to errors due to hysteresis and maximum power point drift. To resolve both of these issues, a maximum power point tracking (MPPT) system was developed with two algorithms: a simple algorithm and a predictive algorithm. The predictive algorithm showed increased resistance to the effects of hysteresis because of its ability to predict the steady-state current after a bias step with a double exponential decay model fit. Some publications have attempted to quantify the degree of J-V hysteresis present in fabricated Perovskite-based devices, but the analysis relied on J-V measurements. The sweep rate, starting bias, illumination time, etc. would affect the value of the calculated degree of hysteresis. A method of using transient photocurrent measurements is presented to accurately quantify the degree of hysteresis for all solar cells: not just Perovskite-based devices. According to this method, almost all solar cell devices exhibit several forms of J-V hysteresis. This method may open new ways of analyzing the defects in fabricated PV devices

Book Electrical Characterization of Thin Film CdTe Solar Cells

Download or read book Electrical Characterization of Thin Film CdTe Solar Cells written by Darshini Desai and published by . This book was released on 2007 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic device modeling results obtained using AMPS (Analysis of microelectronic and photonic structures) suggest that the dominant recombination mechanism is the SRH recombination through midgap states.

Book High efficiency thin film CdTe and a Si based solar cells

Download or read book High efficiency thin film CdTe and a Si based solar cells written by A. D. Compaan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals Of Solar Cells

Download or read book Fundamentals Of Solar Cells written by Alan Fahrenbruch and published by Elsevier. This book was released on 2012-12-02 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion provides an introduction to the fundamental physical principles of solar cells. It aims to promote the expansion of solar photovoltaics from relatively small and specialized use to a large-scale contribution to energy supply. The book begins with a review of basic concepts such as the source of energy, the role of photovoltaic conversion, the development of photovoltaic cells, and sequence of phenomena involved in solar power generation. This is followed by separate chapters on each of the processes that take place in solar cell. These include solar input; properties of semiconductors; recombination and the flow of photogenerated carriers; charge separation and the characteristics of junction barriers; and calculation of solar efficiency. Subsequent chapters deal with the operation of specific solar cell devices such as a single-crystal homojunction (Si); a single-crystal-heterojunction/buried-homojunction (AlGaAs/GaAs); and a polycrystalline, thin-film cell (CuxS/CdS). This book is intended for upper-level graduate students who have a reasonably good understanding of solid state physics and for scientists and engineers involved in research and development of solar cells.

Book Improving Performance in Cadmium Telluride Solar Cells

Download or read book Improving Performance in Cadmium Telluride Solar Cells written by Geethika Kaushalya Liyanage and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline Cadmium Telluride has been developed to be one of the most commercially successful materials for photovoltaic module production with power conversion efficiencies over 21% for research cells to over 18% for module efficiencies. However, little is known about these record devices architecture or the processing methods. Following conventional understanding of a CdTe solar cell operation, researchers have put extensive efforts over the years to improve the CdTe device performance through improved material quality and diode quality. While this have gained some benefit, performance limiting factors to these devices remains unchanged. Deviating from conventional concepts, better understanding of the device physics is needed in order to further improve these devices. This dissertation focusses on identifying these loss mechanisms and setting guidelines to fabricating high efficiency CdTe devices through both experimental and numerical simulation. Experimental work discusses the details to construction and characterization of a CdTe deposition system and employing the new understanding of improving the CdTe device to achieve high performing CdTe devices. Here the traditional CdS window layer is replaced by a wide bandgap MgxZn1-xO to increase the photocurrent generation with better band alignment. With optimum deposition and processing conditions, work demonstrates a device with power conversion efficiency >16%. With a good front contact, performance of the device can be limited by the poor back contact. Expanding the understanding to front contact band alignment, characteristics of a back buffer layer suitable for CdTe back contact is also explored. Through 1D numerical simulation of the conduction and valence band offset, doping levels of the CdTe and back buffer layer material, this dissertation work sets the guideline to achieving CdTe device performance up to 25%.

Book Advanced Processing of CdTe  and CuInxGa1 xSe2 Based Solar Cells

Download or read book Advanced Processing of CdTe and CuInxGa1 xSe2 Based Solar Cells written by and published by . This book was released on 1999 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report summarizes work performed by the University of South Florida Department of Electrical Engineering under this subcontract. The Cadmium telluride(CdTe) portion of this project deals with the development of high-efficiency thin-filmed CdTe solar cells using fabrication techniques that are suitable for manufacturing environments.

Book Advances in Thin Film Solar Cells

Download or read book Advances in Thin Film Solar Cells written by I. M. Dharmadasa and published by CRC Press. This book was released on 2018-09-05 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar energy conversion plays a very important role in the rapid introduction of renewable energy, which is essential to meet future energy demands without further polluting the environment, but current solar panels based on silicon are expensive due to the cost of raw materials and high energy consumption during production. The way forward is to move towards thin-film solar cells using alternative materials and low-cost manufacturing methods. The photovoltaic community is actively researching thin-film solar cells based on amorphous silicon, cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and dye-sensitised and organic materials. However, progress has been slow due to a lack of proper understanding of the physics behind these devices. This book concentrates on the latest developments and attempts to improve our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. The author extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multi-layer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system, and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible and infra-red) within the solar spectrum and combine "impact ionisation" and "impurity photovoltaic" effects. The improved device understanding presented in this book should impact and guide future photovoltaic device development and low-cost thin-film solar panel manufacture. This new edition features an additional chapter besides exercises and their solutions, which will be useful for academics teaching in this field.