Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by Wiley-Interscience. This book was released on 2000-06-02 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Das definitive Buch zur Anwendung der Bayes-Statistik auf wirtschaftliche Probleme in der Praxis, bei denen es um Entscheidungen mit unsicheren Randbedingungen geht! Der Aktionsplan als Ziel der Analyse soll sowohl den Prioritäten Rechnung tragen, die der Entscheidungsfinder bei den Folgen setzt, als auch unbekannte Faktoren in Form von Wahrscheinlichkeiten enthalten. - Jetzt als preiswerte Paperback-Ausgabe! (08/00)
Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by . This book was released on 1966 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Decision Theory written by James Berger and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.
Download or read book Statistical Decision Theory and Bayesian Analysis written by James O. Berger and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
Download or read book Introduction to Statistical Decision Theory written by John Winsor Pratt and published by . This book was released on 1994 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by . This book was released on 1974 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Statistical Decision Theory written by Howard Raiffa and published by John Wiley & Sons. This book was released on 2000-06-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Das definitive Buch zur Anwendung der Bayes-Statistik auf wirtschaftliche Probleme in der Praxis, bei denen es um Entscheidungen mit unsicheren Randbedingungen geht! Der Aktionsplan als Ziel der Analyse soll sowohl den Prioritäten Rechnung tragen, die der Entscheidungsfinder bei den Folgen setzt, als auch unbekannte Faktoren in Form von Wahrscheinlichkeiten enthalten. - Jetzt als preiswerte Paperback-Ausgabe! (08/00)
Download or read book Statistical Decision Problems written by Michael Zabarankin and published by Springer Science & Business Media. This book was released on 2013-12-16 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more. The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.
Download or read book Optimal Statistical Decision Bayesian Inference in Statistical Analysis Applied Statistical Decision Theory written by Morris H. DeGroot and published by Wiley. This book was released on 2006-05-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Set that includes three works covering statistical decision theory and analysis The three books within this set are Optimal Statistical Decisions, Bayesian Inference in Statistical Analysis, and Applied Statistical Decision Theory. Optimal Statistical Decisions discusses the theory and methodology of decision-making in the field. The volume stands as a clear introduction to Bayesian statistical decision theory. A second book, Bayesian Inference in Statistical Analysis, examines the application and relevance of Bayes' theorem to problems that occur during scientific investigations, where inferences must be made regarding parameter values about which little is known. Key aspects of the Bayesian approach are discussed, including the choice of prior distribution, the problem of nuisance parameters, and the role of sufficient statistics. Applied Statistical Decision Theory covers the development of analytic techniques in the field of statistical decision theory. This classic book was first published in the 1960s.
Download or read book Fundamentals of Statistical Exponential Families written by Lawrence D. Brown and published by IMS. This book was released on 1986 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Frontiers of Statistical Decision Making and Bayesian Analysis written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2010-07-24 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.
Download or read book Decision Theory written by Giovanni Parmigiani and published by John Wiley & Sons. This book was released on 2009-05-26 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision theory provides a formal framework for making logical choices in the face of uncertainty. Given a set of alternatives, a set of consequences, and a correspondence between those sets, decision theory offers conceptually simple procedures for choice. This book presents an overview of the fundamental concepts and outcomes of rational decision making under uncertainty, highlighting the implications for statistical practice. The authors have developed a series of self contained chapters focusing on bridging the gaps between the different fields that have contributed to rational decision making and presenting ideas in a unified framework and notation while respecting and highlighting the different and sometimes conflicting perspectives. This book: * Provides a rich collection of techniques and procedures. * Discusses the foundational aspects and modern day practice. * Links foundations to practical applications in biostatistics, computer science, engineering and economics. * Presents different perspectives and controversies to encourage readers to form their own opinion of decision making and statistics. Decision Theory is fundamental to all scientific disciplines, including biostatistics, computer science, economics and engineering. Anyone interested in the whys and wherefores of statistical science will find much to enjoy in this book.
Download or read book Introduction to Statistical Decision Theory written by John Winsor Pratt and published by MIT Press. This book was released on 1995 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt: They then examine the Bernoulli, Poisson, and Normal (univariate and multivariate) data generating processes.
Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Download or read book The Theory That Would Not Die written by Sharon Bertsch McGrayne and published by Yale University Press. This book was released on 2011-05-17 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This account of how a once reviled theory, Baye’s rule, came to underpin modern life is both approachable and engrossing" (Sunday Times). A New York Times Book Review Editors’ Choice Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the generations-long human drama surrounding it. McGrayne traces the rule’s discovery by an 18th century amateur mathematician through its development by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—while practitioners relied on it to solve crises involving great uncertainty and scanty information, such as Alan Turing's work breaking Germany's Enigma code during World War II. McGrayne also explains how the advent of computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security. Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Download or read book Statistical Decision Theory and Related Topics IV written by Shanti S. Gupta and published by . This book was released on 1988 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Decision Theory and Related Topics V written by Shanti S. Gupta and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fifth Purdue International Symposium on Statistical Decision The was held at Purdue University during the period of ory and Related Topics June 14-19,1992. The symposium brought together many prominent leaders and younger researchers in statistical decision theory and related areas. The format of the Fifth Symposium was different from the previous symposia in that in addition to the 54 invited papers, there were 81 papers presented in contributed paper sessions. Of the 54 invited papers presented at the sym posium, 42 are collected in this volume. The papers are grouped into a total of six parts: Part 1 - Retrospective on Wald's Decision Theory and Sequential Analysis; Part 2 - Asymptotics and Nonparametrics; Part 3 - Bayesian Analysis; Part 4 - Decision Theory and Selection Procedures; Part 5 - Probability and Probabilistic Structures; and Part 6 - Sequential, Adaptive, and Filtering Problems. While many of the papers in the volume give the latest theoretical developments in these areas, a large number are either applied or creative review papers.