EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical and Machine Learning Data Mining

Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2017-07-12 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Book Handbook of Statistical Analysis and Data Mining Applications

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Book Statistical and Machine Learning Data Mining

Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2012-02-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Book Advanced Analytics in Mining Engineering

Download or read book Advanced Analytics in Mining Engineering written by Ali Soofastaei and published by Springer Nature. This book was released on 2022-02-23 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Dr. Soofastaei and his colleagues reveal how all mining managers can effectively deploy advanced analytics in their day-to-day operations- one business decision at a time. Most mining companies have a massive amount of data at their disposal. However, they cannot use the stored data in any meaningful way. The powerful new business tool-advanced analytics enables many mining companies to aggressively leverage their data in key business decisions and processes with impressive results. From statistical analysis to machine learning and artificial intelligence, the authors show how many analytical tools can improve decisions about everything in the mine value chain, from exploration to marketing. Combining the science of advanced analytics with the mining industrial business solutions, introduce the “Advanced Analytics in Mining Engineering Book” as a practical road map and tools for unleashing the potential buried in your company’s data. The book is aimed at providing mining executives, managers, and research and development teams with an understanding of the business value and applicability of different analytic approaches and helping data analytics leads by giving them a business framework in which to assess the value, cost, and risk of potential analytical solutions. In addition, the book will provide the next generation of miners – undergraduate and graduate IT and mining engineering students – with an understanding of data analytics applied to the mining industry. By providing a book with chapters structured in line with the mining value chain, we will provide a clear, enterprise-level view of where and how advanced data analytics can best be applied. This book highlights the potential to interconnect activities in the mining enterprise better. Furthermore, the book explores the opportunities for optimization and increased productivity offered by better interoperability along the mining value chain – in line with the emerging vision of creating a digital mine with much-enhanced capabilities for modeling, simulation, and the use of digital twins – in line with leading “digital” industries.

Book Statistical Machine Learning for Engineering with Applications

Download or read book Statistical Machine Learning for Engineering with Applications written by Jürgen Franke and published by Springer Nature. This book was released on with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applications of Artificial Intelligence in Mining and Geotechnical Engineering

Download or read book Applications of Artificial Intelligence in Mining and Geotechnical Engineering written by Hoang Nguyen and published by Elsevier. This book was released on 2023-11-20 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence in Mining, Geotechnical and Geoengineering provides recent advances in mining, geotechnical and geoengineering, as well as applications of artificial intelligence in these areas. It serves as the first book on applications of artificial intelligence in mining, geotechnical and geoengineering, providing an opportunity for researchers, scholars, engineers, practitioners and data scientists from all over the world to understand current developments and applications. Topics covered include slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams and hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. In the geotechnical and geoengineering aspects, topics of specific interest include, but are not limited to, foundation, dam, tunneling, geohazard, geoenvironmental and petroleum engineering, rock mechanics, geotechnical engineering, soil mechanics and foundation engineering, civil engineering, hydraulic engineering, petroleum engineering, engineering geology, etc. - Guides readers through the process of gathering, processing, and analyzing datasets specifically tailored for mining, geotechnical, and engineering challenges. - Examines the evolution and practical implementation of artificial intelligence models in predicting, forecasting, and optimizing solutions for mining, geotechnical, and engineering problems. - Offers cutting-edge methodologies to address the most demanding and complex issues encountered in the fields of mining, geotechnical studies, and engineering.

Book Statistical Foundations of Data Science

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Book Proceedings of the international conference on Machine Learning

Download or read book Proceedings of the international conference on Machine Learning written by John Anderson and published by . This book was released on 19?? with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Research on Machine Learning Applications and Trends  Algorithms  Methods  and Techniques

Download or read book Handbook of Research on Machine Learning Applications and Trends Algorithms Methods and Techniques written by Olivas, Emilio Soria and published by IGI Global. This book was released on 2009-08-31 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book investiges machine learning (ML), one of the most fruitful fields of current research, both in the proposal of new techniques and theoretic algorithms and in their application to real-life problems"--Provided by publisher.

Book Methodologies and Applications of Computational Statistics for Machine Intelligence

Download or read book Methodologies and Applications of Computational Statistics for Machine Intelligence written by Samanta, Debabrata and published by IGI Global. This book was released on 2021-06-25 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the field of computational statistics growing rapidly, there is a need for capturing the advances and assessing their impact. Advances in simulation and graphical analysis also add to the pace of the statistical analytics field. Computational statistics play a key role in financial applications, particularly risk management and derivative pricing, biological applications including bioinformatics and computational biology, and computer network security applications that touch the lives of people. With high impacting areas such as these, it becomes important to dig deeper into the subject and explore the key areas and their progress in the recent past. Methodologies and Applications of Computational Statistics for Machine Intelligence serves as a guide to the applications of new advances in computational statistics. This text holds an accumulation of the thoughts of multiple experts together, keeping the focus on core computational statistics that apply to all domains. Covering topics including artificial intelligence, deep learning, and trend analysis, this book is an ideal resource for statisticians, computer scientists, mathematicians, lecturers, tutors, researchers, academic and corporate libraries, practitioners, professionals, students, and academicians.

Book Applications of Machine Learning

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Book Data Science and Machine Learning Applications in Subsurface Engineering

Download or read book Data Science and Machine Learning Applications in Subsurface Engineering written by Daniel Asante Otchere and published by CRC Press. This book was released on 2024-02-06 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments. This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions.

Book An Introduction to Statistical Learning

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Book Encyclopedia of Machine Learning

Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Book Nonlinear Approaches in Engineering Applications

Download or read book Nonlinear Approaches in Engineering Applications written by Liming Dai and published by Springer. This book was released on 2018-01-29 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyzes the updated principles and applications of nonlinear approaches to solve engineering and physics problems. The knowledge on nonlinearity and the comprehension of nonlinear approaches are inevitable to future engineers and scientists, making this an ideal book for engineers, engineering students, and researchers in engineering, physics, and mathematics. Chapters are of specific interest to readers who seek expertise in optimization, nonlinear analysis, mathematical modeling of complex forms, and non-classical engineering problems. The book covers methodologies and applications from diverse areas such as vehicle dynamics, surgery simulation, path planning, mobile robots, contact and scratch analysis at the micro and nano scale, sub-structuring techniques, ballistic projectiles, and many more.

Book Data Mining for Scientific and Engineering Applications

Download or read book Data Mining for Scientific and Engineering Applications written by R.L. Grossman and published by Springer Science & Business Media. This book was released on 2001-10-31 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.

Book Handbook of Research on Machine Learning Innovations and Trends

Download or read book Handbook of Research on Machine Learning Innovations and Trends written by Hassanien, Aboul Ella and published by IGI Global. This book was released on 2017-04-03 with total page 1269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuous improvements in technological applications have allowed more opportunities to develop automated systems. This not only leads to higher success in smart data analysis, but it increases the overall probability of technological progression. The Handbook of Research on Machine Learning Innovations and Trends is a key resource on the latest advances and research regarding the vast range of advanced systems and applications involved in machine intelligence. Highlighting multidisciplinary studies on decision theory, intelligent search, and multi-agent systems, this publication is an ideal reference source for professionals and researchers working in the field of machine learning and its applications.