Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.
Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Download or read book Emerging Capabilities and Applications of Artificial Higher Order Neural Networks written by Zhang, Ming and published by IGI Global. This book was released on 2021-02-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural network research is one of the new directions for new generation computers. Current research suggests that open box artificial higher order neural networks (HONNs) play an important role in this new direction. HONNs will challenge traditional artificial neural network products and change the research methodology that people are currently using in control and recognition areas for the control signal generating, pattern recognition, nonlinear recognition, classification, and prediction. Since HONNs are open box models, they can be easily accepted and used by individuals working in information science, information technology, management, economics, and business fields. Emerging Capabilities and Applications of Artificial Higher Order Neural Networks contains innovative research on how to use HONNs in control and recognition areas and explains why HONNs can approximate any nonlinear data to any degree of accuracy, their ease of use, and how they can have better nonlinear data recognition accuracy than SAS nonlinear procedures. Featuring coverage on a broad range of topics such as nonlinear regression, pattern recognition, and data prediction, this book is ideally designed for data analysists, IT specialists, engineers, researchers, academics, students, and professionals working in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering research.
Download or read book Applied Artificial Higher Order Neural Networks for Control and Recognition written by Zhang, Ming and published by IGI Global. This book was released on 2016-05-05 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.
Download or read book Adaptive Control with Recurrent High order Neural Networks written by George A. Rovithakis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.
Download or read book Artificial Higher Order Neural Networks for Economics and Business written by Zhang, Ming and published by IGI Global. This book was released on 2008-07-31 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is the first book to provide opportunities for millions working in economics, accounting, finance and other business areas education on HONNs, the ease of their usage, and directions on how to obtain more accurate application results. It provides significant, informative advancements in the subject and introduces the HONN group models and adaptive HONNs"--Provided by publisher.
Download or read book Nature Inspired Computing Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2016-07-26 with total page 1810 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.
Download or read book The Sixth International Symposium on Neural Networks ISNN 2009 written by Hongwei Wang and published by Springer Science & Business Media. This book was released on 2009-05-03 with total page 904 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Advances in Soft Computing and Lecture Notes in Computer th Science vols. 5551, 5552 and 5553, constitute the Proceedings of the 6 Inter- tional Symposium of Neural Networks (ISNN 2009) held in Wuhan, China during May 26–29, 2009. ISNN is a prestigious annual symposium on neural networks with past events held in Dalian (2004), Chongqing (2005), Chengdu (2006), N- jing (2007) and Beijing (2008). Over the past few years, ISNN has matured into a well-established series of international conference on neural networks and their applications to other fields. Following this tradition, ISNN 2009 provided an a- demic forum for the participants to disseminate their new research findings and discuss emerging areas of research. Also, it created a stimulating environment for the participants to interact and exchange information on future research challenges and opportunities of neural networks and their applications. ISNN 2009 received 1,235 submissions from about 2,459 authors in 29 co- tries and regions (Australia, Brazil, Canada, China, Democratic People's Republic of Korea, Finland, Germany, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, Jordan, Macao, Malaysia, Mexico, Norway, Qatar, Republic of Korea, Singapore, Spain, Taiwan, Thailand, Tunisia, United Kingdom, United States, Venezuela, Vietnam, and Yemen) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Based on rigorous reviews by the Program Committee members and reviewers, 95 high-quality papers were selected to be published in this volume.
Download or read book Integration of Swarm Intelligence and Artificial Neural Network written by Satchidananda Dehuri and published by World Scientific. This book was released on 2011 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a new forum for the dissemination of knowledge in both theoretical and applied research on swarm intelligence (SI) and artificial neural network (ANN). It accelerates interaction between the two bodies of knowledge and fosters a unified development in the next generation of computational model for machine learning. To the best of our knowledge, the integration of SI and ANN is the first attempt to integrate various aspects of both the independent research area into a single volume.
Download or read book Network and Communication Technology Innovations for Web and IT Advancement written by Alkhatib, Ghazi I. and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the steady stream of new web based information technologies being introduced to organizations, the need for network and communication technologies to provide an easy integration of knowledge and information sharing is essential. Network and Communication Technology Innovations for Web and IT Advancement presents studies on trends, developments, and methods on information technology advancements through network and communication technology. This collection brings together integrated approaches for communication technology and usage for web and IT advancements.
Download or read book Applications of Artificial Neural Networks for Nonlinear Data written by Patel, Hiral Ashil and published by IGI Global. This book was released on 2020-09-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
Download or read book Artificial Neural Networks for Engineering Applications written by Alma Y Alanis and published by Academic Press. This book was released on 2019-02-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Download or read book An Introduction to Neural Network Methods for Differential Equations written by Neha Yadav and published by Springer. This book was released on 2015-02-26 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.
Download or read book Emerging Capabilities and Applications of Artificial Higher Order Neural Networks written by Ming Zhang and published by Engineering Science Reference. This book was released on 2020 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores the emerging capabilities and applications of artificial higher order neural networks in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering"--
Download or read book Adaptive Control with Recurrent High order Neural Networks written by George A. Rovithakis and published by Springer. This book was released on 2000 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary purpose of this book is to present a set of techniques which allow the design of controllers able to guarantee stability, convergence and robustness for dynamical systems with unknown nonlinearities and of manufacturing systems. To compensate for the significant amount of uncertainty in system structure, a neural network model developed recently, namely the Recurrent High Order Neural Network (RHONN), is employed. Real applications are provided with illustrations and tables for clarification; the book contains material on: - RHONN structure and approximation capabilities - indirect adaptive control - direct adaptive control - scheduling for manufacturing systems - test case for scheduling using RHONNs. The book is primarily intended for industrial and institutional practitioners but should be of significant interest to undergraduate and graduate students and academic scientists working with neural networks and their applications in engineering.
Download or read book Intelligent Autonomous Systems written by Dilip Kumar Pratihar and published by Springer Science & Business Media. This book was released on 2010-02-24 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research book contains a sample of most recent research in the area of intelligent autonomous systems. The contributions include: General aspects of intelligent autonomous systems Design of intelligent autonomous robots Biped robots Robot for stair-case navigation Ensemble learning for multi-source information fusion Intelligent autonomous systems in psychiatry Condition monitoring of internal combustion engine Security management of an enterprise network High dimensional neural nets and applications This book is directed to engineers, scientists, professor and the undergraduate/postgraduate students who wish to explore this field further.
Download or read book Discrete Time High Order Neural Control written by Edgar N. Sanchez and published by Springer. This book was released on 2008-06-24 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.