EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applications and Synthesis of Two photon Absorption Materials for Biological Imaging

Download or read book Applications and Synthesis of Two photon Absorption Materials for Biological Imaging written by Xiaopeng Wang and published by . This book was released on 2000 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design  Synthesis and Characterization of New Two photon Absorbing  2PA  Fluorescent Dyes and Bioconjugates  and Their Applications in Bioimaging

Download or read book Design Synthesis and Characterization of New Two photon Absorbing 2PA Fluorescent Dyes and Bioconjugates and Their Applications in Bioimaging written by Carolina D. Andrade and published by . This book was released on 2010 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of new multiphoton absorbing materials has attracted the attention of researchers for the last two decades. The advantages that multiphoton absorbing materials offer, versus their one-photon absorbing counterparts, rely on the nature of the nonlinearity of the absorption process, where two photons are absorbed simultaneously offering increased 3D resolution, deeper penetration, and less photobleaching and photodamage as a result of a more confined excitation. The applications of efficient two-photon absorbing materials have been extensively expanding into the fields of photodynamic therapy, microscopy, and optical data storage. One of the fields where an increased interest in multiphoton absorbing materials has been most evident is in bioimaging, in particular, when different cellular processes and organelles need to be studied by fluorescence microscopy. The goal of this research was to develop efficient two-photon absorption (2PA) compounds to be used in fluorescence bioimaging, meaning that such compounds need to posses good optical properties, such as high fluorescence quantum yield, 2PA cross section, and photostability. In the first chapter of this dissertation, we describe the synthesis and structural characterization of a new series of fluorescent donor-acceptor and acceptor-acceptor molecules based on the fluorenyl ring system that incorporated functionalities such as alkynes and thiophene rings, through efficient Pd-catalyzed Sonogashira and Stille coupling reactions, in order to increase the length of the conjugation in our systems. These new molecules proved to have high two-photon absorption (2PA), and the effect of these functionalities on their 2PA cross section values was evaluated. Finally, their use in two-photon fluorescence microscopy (2PFM) imaging was demonstrated. One of the limitations of the compounds described in Chapter 1 was their poor water solubility; this issue was addressed in Chapter 2. The use of micelles in drug delivery has been shown to be an area of increasing interest over the last decade. In the bioimaging field, it is key to have dye molecules with a high degree of water solubility to enable cells to uptake the dye. By enclosing a hydrophobic dye in Pluronic® F-127 micelles, we developed a system that facilitates the use of 2PA molecules (typically hydrophobic) in biological systems for nonlinear biophotonic applications, specifically to image the lysosomes. Furthermore, we report in this chapter the efficient microwave-assisted synthesis of the dye used in this study. In addition, linear photophysical and photochemical parameters, two-photon absorption (2PA), and superfluorescence properties of the dye studied in Chapter 2, were investigated in Chapter 3. The steady-state absorption, fluorescence, and excitation anisotropy spectra of this dye were measured in several organic solvents and aqueous media. In Chapter 4, we describe the preparation and the use of an efficient and novel two-photon absorbing fluorescent probe conjugated to an antibody that confers selectivity towards the vascular endothelial growth factor receptor 2 (VEGFR-2) in porcine aortic endothelial cells that express this receptor (PAE-KDR). It is known that this receptor is overexpressed in certain cancer processes. Thus, targeting of this receptor will be useful to image the tumor vasculature. It was observed that when the dye was incubated with cells that do not express the receptor, no effective binding between the bioconjugate and the cells took place, resulting in very poor, nonspecific fluorescence images by both one and two-photon excitation. On the other hand, when the dye was incubated with cells that expressed VEGFR-2, efficient imaging of the cells was obtained, even at very low concentrations (0.4[micrometer]). Moreover, incubation of the bioconjugate with tissue facilitated successful imaging of vasculature in mouse embryonic tissue.

Book Synthesis of Fluorene based Derivatives  Characterization of Optical Properties and Their Applications in Two photon Fluorescence Imaging and Photocatalysis

Download or read book Synthesis of Fluorene based Derivatives Characterization of Optical Properties and Their Applications in Two photon Fluorescence Imaging and Photocatalysis written by Grace Wairimu Githaiga and published by . This book was released on 2015 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-photon absorption (2PA) phenomenon has attracted attention from various fields ranging from chemistry and biology to optics and engineering. Two of the common NLO applications in which organic materials have been used are three-dimensional (3D) fluorescence imaging and optical power limiting. Two-photon absorbing materials are, therefore, in great demand to meet the needs of emerging technologies. Organic molecules show great promise to meet this need as they can be customized through molecular engineering, and as the development of two-photon materials that suit practical application intensifies, so does research to meet this need. However, there remains some uncertainty in the particulars of design criteria for molecules with large 2PA cross sections at desired wavelengths, as such research to understand structure-property relationships is matter of significant importance. As a result, the full potential of 2PA materials has not been fully exploited. Several strategies to enhance the magnitude and tune the wavelength of 2PA have been reported for [pi]conjugated organic molecules. On this account, we have designed novel fluorophores using the fluorene moiety and modified it to tune the properties of the compounds.

Book Optically Induced Nanostructures

Download or read book Optically Induced Nanostructures written by Karsten König and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-05-19 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.

Book Enhanced Two photon Absorption in a Squaraine fluorene squaraine Dye

Download or read book Enhanced Two photon Absorption in a Squaraine fluorene squaraine Dye written by William V. Moreshead and published by . This book was released on 2013 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of any new technology is usually accompanied by a need for new or improved materials which make that technology useful in practical applications. In the case of two-photon absorption (2PA) this has truly been the case. Since its first demonstration in 1961, there has been an ever increasing quest to understand the relationships between two-photon absorption and the structure of two-photon absorbing materials. This quest has been motivated by the many applications for 2PA which have been reported, including fluorescence bioimaging, 3D microfabrication, 3D optical data storage, upconverted lasing, and photodynamic therapy. The work presented in this dissertation represents another step in the effort to better understand the structure/property relationships of 2PA. In this work a new, squaraine-fluorene-squaraine molecule, proposed through a joint effort of quantum and synthetic chemists, was synthesized and its photophysical properties were measured. The measurements included linear and two-photon photophysical properties, as well as solvatochromic behavior. Quantum calculations were done to aid in understanding those photophysical and solvatochromic properties. A single squaraine dye was also synthesized and used as a model compound to assist in understanding this new structure. In Chapter 1 an introduction to 2PA and several of its applications is given. Chapter 2 gives a background of 2PA structure/property relationships that have been reported to date, based on work done with polymethine dyes. Chapter 3 gives a full account of the synthesis, characterization, and detailed quantum chemical analyses of this new squaraine-fluorene-squaraine molecule and the corresponding model compound squaraine dye. Chapter 4 gives some additional work and suggested future directions.

Book Self assembly and Photophysics of Selected Organic Materials and Two photon Bioimaging with Profluorescent Nitroxides  Polyelectrolyte Nanoparticles  and Squaraine Probes

Download or read book Self assembly and Photophysics of Selected Organic Materials and Two photon Bioimaging with Profluorescent Nitroxides Polyelectrolyte Nanoparticles and Squaraine Probes written by Hyo-Yang Ahn and published by . This book was released on 2011 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-photon absorption and upconverted fluorescence has been utilized in a variety of applications in pure science and engineering. Multiphoton-based techniques were used in this research in order to understand photophysical and chemical characteristics of several fluorescent dyes and to demonstrate some of their key applications. Two-photon fluorescence microscopy (2PFM) has become a powerful technique in bio-photonics for non-invasive imaging in the near-infrared (NIR) region (700~1000 nm) that often results in less photobleaching. In Chapter 1, there is a brief introduction to fluorescence, examples of fluorescence materials, and a discussion of the advantages of two-photon absorption. 2PFM imaging was utilized in Chapters 2 to 4 for various applications. In Chapter 2, a new squaraine dye is introduced and its linear and nonlinear photophysical properties are characterized. This compound has very high two-photon absorption (2PA) cross sections and high photostability both in an organic solvent and when encapsulated in micelles. Based on these properties, this dye was demonstrated as a near-infrared (NIR) probe in in vitro 2PFM imaging with excitation over 800 nm wavelength. In Chapter 3, new profluorescent nitroxides are introduced. Nitroxide radicals are utilized for electron paramagnetic resonance (EPR) spectroscopy and in biological systems as some are known, in some manner, to mimic the behavior of superoxide dismutase (SOD) that detoxifies or mitigates oxidative stress by trapping free radicals. Here, two profluorescent nitroxides investigated for use as a two-photon fluorescent oxidative stress indicator in in vitro two-photon fluorescence microscopy (2PFM) imaging. In Chapter 4, two-photon excited (2PE) fluorescence of a conjugated polyelectrolyte (CPE), PPESO3, was studied in methanol and in water. The results of CPE quenching studies were comparable under both one-photon excitation conditions and two-photon excitation. CPE coated silica nanoparticles were incubated in HeLa cells and 2PFM imaging was demonstrated for this new class of fluorescent probe. Supramolecular structures based on organized assemblies/aggregation of chromophores have attracted widespread interest as molecular devices with potential applications in molecular electronics, artificial light harvesting, and pharmacology. In Chapter 5, J-aggregate formation was investigated for two porphyrin-based dyes, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS, 4) and an amino tris-sulfonate analog (5) in water via UV-vis, fluorescence, and lifetime decay studies. The effect of aggregation on two-photon absorption properties was also investigated. A functionalized norbornene-based homopolymer, synthesized by the ring opening metathesis polymerization technique was used as a J-aggregation enhancement template and had a role of polymer-templating to facilitate porphyrin aggregation and modulate 2PA. In Chapter 6, squaraine dye aggregates templated with single wall carbon nanotubes (SWCNTs) that were atomically clean were studied by using optical absorption spectroscopy, atomic force microscopy (AFM), and photoconductivity measurements. SWCNTs selectively promote the formation of squaraine dye aggregates with a head-to-head stacking arrangement, and these dye aggregates effectively photosensitize SWCNTs, demonstrating that this novel approach can yield highly photosensitized devices.

Book Two Photon Absorption Materials

Download or read book Two Photon Absorption Materials written by Jun Kawamata and published by Pan Stanford Publishing. This book was released on 2015-12-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes effective strategies for designing efficient two-photon absorption compounds. Not only experimental examples but also recent progresses in theoretical aspect are described. Furthermore, specific design strategies of compounds for important applications, data storage and biological imaging, are described.

Book Synthesis of Novel Fluorene based Two photon Absorbing Molecules and Their Applications in Optical Data Storage  Microfabrication  and Stimulated Emission Depletion

Download or read book Synthesis of Novel Fluorene based Two photon Absorbing Molecules and Their Applications in Optical Data Storage Microfabrication and Stimulated Emission Depletion written by Ciceron Yanez and published by . This book was released on 2009 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a polymer matrix, generating a data storage capacity of up to 1.8 x 1013 bits/cm3. The possibility of using these PAGs in microfabrication is described in Chapter III, where two-photon induced cationic ring-opening polymerization (CROP) crosslinking of an SU8 resin is employed to produce free-standing microstructures. Chapter IV describes the investigation of one- and two-photon stimulated emission transitions by the fluorescence quenching of a sulfonyl-containing fluorene compound in solution at room temperate using a picosecond pump-probe technique. The nature of stimulated transitions under various fluorescence excitation and quenching conditions were analyzed theoretically, and good agreement with experimental data was demonstrated. Two-photon stimulated transitions S1 [right arrow] S0 were shown at [lambda subscript q] = 1064 nm. The two-photon stimulated emission cross section of the sulfonyl fluorophore was estimated as [delta]2[subscript PE]([lambda subscript q]) [approximately] 240 - 280 GM, making this compound a good candidate for use in two-photon stimulated emission depletion (STED) microscopy.

Book Fluorescent Materials for Cell Imaging

Download or read book Fluorescent Materials for Cell Imaging written by Fu-Gen Wu and published by Springer Nature. This book was released on 2020-10-26 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the latest fluorescent materials for cell imaging. Cell imaging is a widely used basic technique that helps scientists gain a better understanding of biological functions through studies of cellular structure and dynamics. In the past decades, the development of a variety of new fluorescent materials has significantly extended the applications of cellular imaging techniques. This book presents recently developed fluorescent materials, including semiconductor quantum dots, carbon dots, silicon nanoparticles, metal nanoclusters, upconversion nanoparticles, conjugated polymers/polymer dots, aggregation-induced emission (AIE) probes, and coordination compounds, used for various cellular imaging purposes. It will appeal to cell biologists and other researchers in academia, industry and clinical settings who are interested in the technical development and advanced applications of fluorescence imaging in cells, tissues and organisms to explore the mechanisms of biological functions and diseases.

Book Computational Science     ICCS 2009

Download or read book Computational Science ICCS 2009 written by Gabrielle Allen and published by Springer Science & Business Media. This book was released on 2009-05-19 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 5544-5545 constitutes the refereed proceedings of the 9th International Conference on Computational Science, ICCS 2009, held in Baton Rouge, LA, USA in May 2008. The 60 revised papers of the main conference track presented together with the abstracts of 5 keynote talks and the 138 revised papers from 13 workshops were carefully reviewed and selected for inclusion in the three volumes. The general main track of ICSS 2009 was organized in about 20 parallel sessions addressing the following topics: e-Science Applications and Systems, Scheduling, Software Services and Tools, New Hardware and Its Applications, Computer Networks, Simulation of Complex Systems, Image Processing, Optimization Techniques, and Numerical Methods.

Book Photonics  Volume 1

Download or read book Photonics Volume 1 written by David L. Andrews and published by John Wiley & Sons. This book was released on 2015-01-16 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics. This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 902 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of  the  First International Workshop on Optical Power Limiting

Download or read book Proceedings of the First International Workshop on Optical Power Limiting written by Francois Kajzar and published by CRC Press. This book was released on 1999 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Fluorescence Reporters in Chemistry and Biology I

Download or read book Advanced Fluorescence Reporters in Chemistry and Biology I written by Alexander P. Demchenko and published by Springer Science & Business Media. This book was released on 2010-09-08 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluorescence reporter is the key element of any sensing or imaging technology. Its optimal choice and implementation is very important for increasing the sensitivity, precision, multiplexing power, and also the spectral, temporal, and spatial reso- tion in different methods of research and practical analysis. Therefore, design of ?uorescence reporters with advanced properties is one of the most important problems. In this volume, top experts in this ?eld provide advanced knowledge on the design and properties of ?uorescent dyes. Organic dyes were the ?rst ?uorescent materials used for analytical purposes, and we observe that they retain their leading positions against strong competition of new materials – conjugated polymers, semiconductor nanocrystals, and metal chelating complexes. Recently, molecular and cellular biology got a valuable tool of organic ?uorophores synt- sized by cell machinery and incorporated into green ?uorescent protein and its analogs. Demands of various ?uorescence techniques operating in spectral, anisotropy, and time domains require focused design of ?uorescence reporters well adapted to these techniques. Near-IR spectral range becomes more and more attractive for various applications, and new dyes emitting in this range are strongly requested. Two-photonic ?uorescence has become one of the major tools in bioimaging, and ?uorescence reporters well adapted to this technique are in urgent need. These problems cannot be solved without the knowledge of fundamental principles of dye design and of physical phenomena behind their ?uorescence response.

Book Conjugated Polymers for Biological and Biomedical Applications

Download or read book Conjugated Polymers for Biological and Biomedical Applications written by Bin Liu and published by John Wiley & Sons. This book was released on 2018-06-11 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to specifically focus on applications of conjugated polymers in the fields of biology and biomedicine covers materials science, physical principles, and nanotechnology. The editor and authors, all pioneers and experts with extensive research experience in the field, firstly introduce the synthesis and optical properties of various conjugated polymers, highlighting how to make organic soluble polymers compatible with the aqueous environment. This is followed by the application of these materials in optical sensing and imaging as well as the emerging applications in image-guided therapy and in the treatment of neurodegenerative diseases. The result is a consolidated overview for polymer chemists, materials scientists, biochemists, biotechnologists, and bioengineers.

Book Design  Synthesis  and Application of Novel    Conjugated Materials

Download or read book Design Synthesis and Application of Novel Conjugated Materials written by Haichang Zhang and published by Frontiers Media SA. This book was released on 2021-02-11 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: