EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Application of Machine Learning in Agriculture

Download or read book Application of Machine Learning in Agriculture written by Mohammad Ayoub Khan and published by Academic Press. This book was released on 2022-05-14 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Application of Machine Learning in Smart Agriculture is the first book to present a multidisciplinary look at how technology can not only improve agricultural output, but the economic efficiency of that output as well. Through a global lens, the book approaches the subject from a technical perspective, providing important knowledge and insights for effective and efficient implementation and utilization of machine learning. As artificial intelligence techniques are being used to increase yield through optimal planting, fertilizing, irrigation, and harvesting, these are only part of the complex picture which must also take into account the economic investment and its optimized return. The performance of machine learning models improves over time as the various mathematical and statistical models are proven. Presented in three parts, Application of Machine Learning in Smart Agriculture looks at the fundamentals of smart agriculture; the economics of the technology in the agricultural marketplace; and a diverse representation of the tools and techniques currently available, and in development. This book is an important resource for advanced level students and professionals working with artificial intelligence, internet of things, technology and agricultural economics. - Addresses the technology of smart agriculture from a technical perspective - Reveals opportunities for technology to improve and enhance not only yield and quality, but the economic value of a food crop - Discusses physical instruments, simulations, sensors, and markets for machine learning in agriculture

Book Computer Vision and Machine Learning in Agriculture

Download or read book Computer Vision and Machine Learning in Agriculture written by Mohammad Shorif Uddin and published by Springer Nature. This book was released on 2021-03-23 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses computer vision, a noncontact as well as a nondestructive technique involving the development of theoretical and algorithmic tools for automatic visual understanding and recognition which finds huge applications in agricultural productions. It also entails how rendering of machine learning techniques to computer vision algorithms is boosting this sector with better productivity by developing more precise systems. Computer vision and machine learning (CV-ML) helps in plant disease assessment along with crop condition monitoring to control the degradation of yield, quality, and severe financial loss for farmers. Significant scientific and technological advances have been made in defect assessment, quality grading, disease recognition, pests, insects, fruits, and vegetable types recognition and evaluation of a wide range of agricultural plants, crops, leaves, and fruits. The book discusses intelligent robots developed with the touch of CV-ML which can help farmers to perform various tasks like planting, weeding, harvesting, plant health monitoring, and so on. The topics covered in the book include plant, leaf, and fruit disease detection, crop health monitoring, applications of robots in agriculture, precision farming, assessment of product quality and defects, pest, insect, fruits, and vegetable types recognition.

Book Internet of Things and Machine Learning in Agriculture

Download or read book Internet of Things and Machine Learning in Agriculture written by Jyotir Moy Chatterjee and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-02-08 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agriculture is one of the most fundamental human activities. As the farming capacity has expanded, the usage of resources such as land, fertilizer, and water has grown exponentially, and environmental pressures from modern farming techniques have stressed natural landscapes. Still, by some estimates, worldwide food production needs to increase to keep up with global food demand. Machine Learning and the Internet of Things can play a promising role in the Agricultural industry, and help to increase food production while respecting the environment. This book explains how these technologies can be applied, offering many case studies developed in the research world.

Book Integration of Cloud Computing with Internet of Things

Download or read book Integration of Cloud Computing with Internet of Things written by Monika Mangla and published by John Wiley & Sons. This book was released on 2021-03-08 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to integrate the aspects of IoT, Cloud computing and data analytics from diversified perspectives. The book also plans to discuss the recent research trends and advanced topics in the field which will be of interest to academicians and researchers working in this area. Thus, the book intends to help its readers to understand and explore the spectrum of applications of IoT, cloud computing and data analytics. Here, it is also worth mentioning that the book is believed to draw attention on the applications of said technology in various disciplines in order to obtain enhanced understanding of the readers. Also, this book focuses on the researches and challenges in the domain of IoT, Cloud computing and Data analytics from perspectives of various stakeholders.

Book Agriculture 5 0

Download or read book Agriculture 5 0 written by Latief Ahmad and published by CRC Press. This book was released on 2021-03-24 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agriculture 5.0: Artificial Intelligence, IoT & Machine Learning provides an interdisciplinary, integrative overview of latest development in the domain of smart farming. It shows how the traditional farming practices are being enhanced and modified by automation and introduction of modern scalable technological solutions that cut down on risks, enhance sustainability, and deliver predictive decisions to the grower, in order to make agriculture more productive. An elaborative approach has been used to highlight the applicability and adoption of key technologies and techniques such WSN, IoT, AI and ML in agronomic activities ranging from collection of information, analysing and drawing meaningful insights from the information which is more accurate, timely and reliable.It synthesizes interdisciplinary theory, concepts, definitions, models and findings involved in complex global sustainability problem-solving, making it an essential guide and reference. It includes real-world examples and applications making the book accessible to a broader interdisciplinary readership. This book clarifies hoe the birth of smart and intelligent agriculture is being nurtured and driven by the deployment of tiny sensors or AI/ML enabled UAV’s or low powered Internet of Things setups for the sensing, monitoring, collection, processing and storing of the information over the cloud platforms. This book is ideal for researchers, academics, post-graduate students and practitioners of agricultural universities, who want to embrace new agricultural technologies for Determination of site-specific crop requirements, future farming strategies related to controlling of chemical sprays, yield, price assessments with the help of AI/ML driven intelligent decision support systems and use of agri-robots for sowing and harvesting. The book will be covering and exploring the applications and some case studies of each technology, that have heavily made impact as grand successes. The main aim of the book is to give the readers immense insights into the impact and scope of WSN, IoT, AI and ML in the growth of intelligent digital farming and Agriculture revolution 5.0.The book also focuses on feasibility of precision farming and the problems faced during adoption of precision farming techniques, its potential in India and various policy measures taken all over the world. The reader can find a description of different decision support tools like crop simulation models, their types, and application in PA. Features: Detailed description of the latest tools and technologies available for the Agriculture 5.0. Elaborative information for different type of hardware, platforms and machine learning techniques for use in smart farming. Elucidates various types of predictive modeling techniques available for intelligent and accurate agricultural decision making from real time collected information for site specific precision farming. Information about different type of regulations and policies made by all over the world for the motivation farmers and innovators to invest and adopt the AI and ML enabled tools and farming systems for sustainable production.

Book Artificial Intelligence in Agriculture

Download or read book Artificial Intelligence in Agriculture written by Rajesh Singh and published by CRC Press. This book was released on 2021-11-23 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a platform for anyone who wishes to explore Artificial Intelligence in the field of agriculture from scratch or broaden their understanding and its uses. This book offers a practical, hands-on exploration of Artificial Intelligence, machine learning, deep Learning, computer vision and Expert system with proper examples to understand. This book also covers the basics of python with example so that any anyone can easily understand and utilize artificial intelligence in agriculture field. This book is divided into two parts wherein first part talks about the artificial intelligence and its impact in the agriculture with all its branches and their basics. The second part of the book is purely implementation of algorithms and use of different libraries of machine learning, deep learning and computer vision to build useful and sightful projects in real time which can be very useful for you to have better understanding of artificial intelligence. After reading this book, the reader will an understanding of what Artificial Intelligence is, where it is applicable, and what are its different branches, which can be useful in different scenarios. The reader will be familiar with the standard workflow for approaching and solving machine-learning problems, and how to address commonly encountered issues. The reader will be able to use Artificial Intelligence to tackle real-world problems ranging from crop health prediction to field surveillance analytics, classification to recognition of species of plants etc. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.

Book Emerging Trends in Data Driven Computing and Communications

Download or read book Emerging Trends in Data Driven Computing and Communications written by Rajeev Mathur and published by Springer Nature. This book was released on 2021-09-27 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes best selected, high-quality research papers presented at International Conference on Data Driven Computing and IoT (DDCIoT 2021) organized jointly by Geetanjali Institute of Technical Studies (GITS), Udaipur, and Rajasthan Technical University, Kota, India, during March 20–21, 2021. This book presents influential ideas and systems in the field of data driven computing, information technology, and intelligent systems.

Book Machine Learning and Artificial Intelligence for Agricultural Economics

Download or read book Machine Learning and Artificial Intelligence for Agricultural Economics written by Chandrasekar Vuppalapati and published by Springer Nature. This book was released on 2021-10-04 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses machine learning and artificial intelligence (AI) for agricultural economics. It is written with a view towards bringing the benefits of advanced analytics and prognostics capabilities to small scale farmers worldwide. This volume provides data science and software engineering teams with the skills and tools to fully utilize economic models to develop the software capabilities necessary for creating lifesaving applications. The book introduces essential agricultural economic concepts from the perspective of full-scale software development with the emphasis on creating niche blue ocean products. Chapters detail several agricultural economic and AI reference architectures with a focus on data integration, algorithm development, regression, prognostics model development and mathematical optimization. Upgrading traditional AI software development paradigms to function in dynamic agricultural and economic markets, this volume will be of great use to researchers and students in agricultural economics, data science, engineering, and machine learning as well as engineers and industry professionals in the public and private sectors.

Book Smart Agriculture

Download or read book Smart Agriculture written by Govind Singh Patel and published by CRC Press. This book was released on 2021-02-10 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.

Book Deep Learning Applications and Intelligent Decision Making in Engineering

Download or read book Deep Learning Applications and Intelligent Decision Making in Engineering written by Senthilnathan, Karthikrajan and published by IGI Global. This book was released on 2020-10-23 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning includes a subset of machine learning for processing the unsupervised data with artificial neural network functions. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. When applied to engineering, deep learning can have a great impact on the decision-making process. Deep Learning Applications and Intelligent Decision Making in Engineering is a pivotal reference source that provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is ideally designed for engineers, computer scientists, programmers, software engineers, research scholars, IT professionals, academicians, and postgraduate students seeking current research on the implementation of automation and deep learning in various engineering disciplines.

Book Agricultural Informatics

Download or read book Agricultural Informatics written by Amitava Choudhury and published by John Wiley & Sons. This book was released on 2021-03-02 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the increasing population (the Food and Agriculture Organization of the United Nations estimates 70% more food will be needed in 2050 than was produced in 2006), issues related to food production have yet to be completely addressed. In recent years, Internet of Things technology has begun to be used to address different industrial and technical challenges to meet this growing need. These Agro-IoT tools boost productivity and minimize the pitfalls of traditional farming, which is the backbone of the world's economy. Aided by the IoT, continuous monitoring of fields provides useful and critical information to farmers, ushering in a new era in farming. The IoT can be used as a tool to combat climate change through greenhouse automation; monitor and manage water, soil and crops; increase productivity; control insecticides/pesticides; detect plant diseases; increase the rate of crop sales; cattle monitoring etc. Agricultural Informatics: Automation Using the IoT and Machine Learning focuses on all these topics, including a few case studies, and they give a clear indication as to why these techniques should now be widely adopted by the agriculture and farming industries.

Book Green Internet of Things and Machine Learning

Download or read book Green Internet of Things and Machine Learning written by Roshani Raut and published by John Wiley & Sons. This book was released on 2022-01-10 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health Economics and Financing Encapsulates different case studies where green-IOT and machine learning can be used for making significant progress towards improvising the quality of life and sustainable environment. The Internet of Things (IoT) is an evolving idea which is responsible for connecting billions of devices that acquire, perceive, and communicate data from their surroundings. Because this transmission of data uses significant energy, improving energy efficiency in IOT devices is a significant topic for research. The green internet of things (G-IoT) makes it possible for IoT devices to use less energy since intelligent processing and analysis are fundamental to constructing smart IOT applications with large data sets. Machine learning (ML) algorithms that can predict sustainable energy consumption can be used to prepare guidelines to make IoT device implementation easier. Green Internet of Things and Machine Learning lays the foundation of in-depth analysis of principles of Green-Internet of Things (G-IoT) using machine learning. It outlines various green ICT technologies, explores the potential towards diverse real-time areas, as well as highlighting various challenges and obstacles towards the implementation of G-IoT in the real world. Also, this book provides insights on how the machine learning and green IOT will impact various applications: It covers the Green-IOT and ML-based smart computing, ML techniques for reducing energy consumption in IOT devices, case studies of G-IOT and ML in the agricultural field, smart farming, smart transportation, banking industry and healthcare. Audience The book will be helpful for research scholars and researchers in the fields of computer science and engineering, information technology, electronics and electrical engineering. Industry experts, particularly in R&D divisions, can use this book as their problem-solving guide.

Book Artificial Intelligence and Smart Agriculture Technology

Download or read book Artificial Intelligence and Smart Agriculture Technology written by Utku Kose and published by CRC Press. This book was released on 2022-06-27 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.

Book Artificial Intelligence and IoT Based Technologies for Sustainable Farming and Smart Agriculture

Download or read book Artificial Intelligence and IoT Based Technologies for Sustainable Farming and Smart Agriculture written by Tomar, Pradeep and published by IGI Global. This book was released on 2021-01-08 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology continues to saturate modern society, agriculture has started to adopt digital computing and data-driven innovations. This emergence of “smart” farming has led to various advancements in the field, including autonomous equipment and the collection of climate, livestock, and plant data. As connectivity and data management continue to revolutionize the farming industry, empirical research is a necessity for understanding these technological developments. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture provides emerging research exploring the theoretical and practical aspects of critical technological solutions within the farming industry. Featuring coverage on a broad range of topics such as crop monitoring, precision livestock farming, and agronomic data processing, this book is ideally designed for farmers, agriculturalists, product managers, farm holders, manufacturers, equipment suppliers, industrialists, governmental professionals, researchers, academicians, and students seeking current research on technological applications within agriculture and farming.

Book Deep Learning for Sustainable Agriculture

Download or read book Deep Learning for Sustainable Agriculture written by Ramesh Chandra Poonia and published by Academic Press. This book was released on 2022-01-09 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm. - Introduces new deep learning models developed to address sustainable solutions for issues related to agriculture - Provides reviews on the latest intelligent technologies and algorithms related to the state-of-the-art methodologies of monitoring and mitigation of sustainable agriculture - Illustrates through case studies how deep learning has been used to address a variety of agricultural diseases that are currently on the cutting edge - Delivers an accessible explanation of artificial intelligence algorithms, making it easier for the reader to implement or use them in their own agricultural domain

Book Recommender System with Machine Learning and Artificial Intelligence

Download or read book Recommender System with Machine Learning and Artificial Intelligence written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2020-07-08 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.

Book IoT Machine Learning Applications in Telecom  Energy  and Agriculture

Download or read book IoT Machine Learning Applications in Telecom Energy and Agriculture written by Puneet Mathur and published by Apress. This book was released on 2020-05-09 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python. The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains. After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. What You Will Learn Implement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with PythonSet up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenariosDevelop solutions for commercial-grade IoT or IIoT projectsImplement case studies in machine learning with IoT from scratch Who This Book Is For Raspberry Pi and Arduino enthusiasts and data science and machine learning professionals.