EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Anisotropic Superfluidity in a Dipolar Bose Gas

Download or read book Anisotropic Superfluidity in a Dipolar Bose Gas written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A quintessential feature of superfluidity is the ability to support dissipationless flow, for example, when an object moves through a superfluid and experiences no drag. This, however, only occurs when the object is moving below a certain critical velocity; when it exceeds this critical velocity it dissipates energy into excitations of the superfluid, resulting in a net drag force on the object and the breakdown of superfluid flow. In many superfluids, such as dilute Bose-Einstein condensates (BECs) of atoms with contact interactions, this critical velocity is simply the speed of sound in the system, where the speed of sound is set by the density and the s-wave scattering length of the atoms. However, for other superfluids, such as liquid 4He, this is not the case. In 4He, the critical velocity is set by a roton mode, corresponding to a peak in the static structure factor of the system at some finite, non-zero momentum, with a characteristic velocity that is considerably less than the speed of sound in the liquid. This feature has been verified experimentally via measurements of ion-drift velocity in the fluid, thereby providing insight into the detailed structure of the system. Interestingly, a roton-like feature was predicted to exist in the dispersion relation of a quasi-two-dimensional (q2D) dipolar BEC (DBEC) [16], or a BEC with dipole-dipole interactions. However, unlike the dispersion of 4He, the disperSion of a DBEC is highly tunable as a function of the condensate density or dipole-dipole interaction (ddi) strength. Additionally, the DBEC is set apart from liquid 4He in that its interactions depend on how the dipoles are oriented in space. Thus, the DBEC provides an ideal system to study the effects that anisotropies have on the bulk properties of a superfluid, such as the critical velocity. Here we consider a DBEC in a quasi-two-dimensional (q2D) geometry and allow for the dipoles to be polarized at a nonzero angle into the plane so that the in-plane interaction is anisotropic. By induding repulsive contact interactions to ensure a stable system, we perform direct numeric simulations of an obstacle moving through the system in directions parallel and perpendicular to the tilt of the dipoles. We observe a distinct anisotropic superfluid response in these cases, both for dissipation into quasipartides and topological excitations (vortices), in the form of an anisotropic critical velocity that is larger in the direction of the dipole tilt than in the perpendicular direction. Interestingly, we find that, while the roton displays an anisotropic character, the speed of sound in the systrm is isotropic. Thus, we characterize the DBEC as an fmisotropic superfluid while illuminating the crucial role that the roton plays in this anisotropic behavior.

Book Bose Einstein Condensation and Superfluidity

Download or read book Bose Einstein Condensation and Superfluidity written by Lev Petrovich Pitaevskiĭ and published by Oxford University Press. This book was released on 2016 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atomic gases is a rapidly developing field of physics that attracts many young researchers around the world. This book gives a comprehensive overview of exciting developments in Bose-Einstein condensation and superfluidity from a theoretical perspective and makes sense of key experiments with a special focus on ultracold atomic gases.

Book Bose Einstein Condensation and Superfluidity

Download or read book Bose Einstein Condensation and Superfluidity written by Lev Pitaevskii and published by Oxford University Press. This book was released on 2016-01-21 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultracold atomic gases is a rapidly developing area of physics that attracts many young researchers around the world. Written by world renowned experts in the field, this book gives a comprehensive overview of exciting developments in Bose-Einstein condensation and superfluidity from a theoretical perspective. The authors also make sense of key experiments from the past twenty years with a special focus on the physics of ultracold atomic gases. These systems are characterized by a rich variety of features which make them similar to other important systems of condensed matter physics (like superconductors and superfluids). At the same time they exhibit very peculiar properties which are the result of their gaseous nature, the possibility of trapping in a variety of low dimensional and periodical configurations, and of manipulating the two-body interaction. The book presents a systematic theoretical description based on the most successful many-body approaches applied both to bosons and fermions, at equilibrium and out of equilibrium, at zero as well as at finite temperature. Both theorists and experimentalists will benefit from the book, which is mainly addressed to beginners in the field (master students, PhD students, young postdocs), but also to more experienced researchers who can find in the book novel inspirations and motivations as well as new insightful connections. Building on the authors' first book, Bose-Einstein Condensation (Oxford University Press, 2003), this text offers a more systematic description of Fermi gases, quantum mixtures, low dimensional systems and dipolar gases. It also gives further emphasis on the peculiar phenomenon of superfluidity and its key role in many observable properties of these ultracold quantum gases.

Book Theory of a Nearly Two dimensional Dipolar Bose Gas

Download or read book Theory of a Nearly Two dimensional Dipolar Bose Gas written by Michael A. Woulfe and published by . This book was released on 2016 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: This project develops a theoretical model for gases of bosonic atoms at ultracold, but finite temperatures. Under these circumstances, the gas can undergo a phase transition to a purely quantum mechanical state, a Bose-Einstein condensate (BEC), where the atoms cease to behave like distinguishable entities, and instead form a single macroscopic matter wave. At exactly zero temperature, all of the atoms occupy the BEC; at finite temperatures, a significant fraction of the atoms leave the BEC and form a thermal cloud. Thus, the state of a low, but finite-temperature gas of bosonic atoms involves the coexistence of a BEC and a thermal cloud. Further, the atoms can interact in a variety of different ways, which have important consequences for the state of the gas. We consider both short range contact interactions and dipolar interactions, where the atoms interact via the long-range anisotropic dipole-dipole force. We develop this model in both three- and two-dimensional geometries.

Book Novel Superfluids

    Book Details:
  • Author : Karl-Heinz Bennemann
  • Publisher : OUP Oxford
  • Release : 2013-02-28
  • ISBN : 0191650196
  • Pages : 641 pages

Download or read book Novel Superfluids written by Karl-Heinz Bennemann and published by OUP Oxford. This book was released on 2013-02-28 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the latest developments in the field of Superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. It began with the discovery of superconductivity in mercury in 1911, which was ultimately described theoretically by the theory of Bardeen Cooper and Schriever (BCS) in 1957. The analogous phenomena, superfluidity, was discovered in helium in 1938 and tentatively explained shortly thereafter as arising from a Bose-Einstein Condensation (BEC) by London. But the importance of superfluidity, and the range of systems in which it occurs, has grown enormously. In addition to metals and the helium liquids the phenomena has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials, and cold gasses trapped in high vacuum. It very likely exist for neutrons in a neutron star and, possibly, in a conjectured quark state at their center. Even the Universe itself can be regarded as being in a kind of superfluid state. All these topics are discussed by experts in the respective subfields.

Book Microscopic Description of Two Dimensional Dipolar Quantum Gases

Download or read book Microscopic Description of Two Dimensional Dipolar Quantum Gases written by Adrián Macía Rey and published by . This book was released on 2015 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: A microscopic description of the many-body properties of anisotropic homogeneous gases of bosonic dipoles in two dimensions is presented and discussed. By changing the polarization angle with respect to the plane, we study the impact of the anisotropy, present in the dipole-dipole interaction on different physical quantities. We restrict the analysis to the range of polarization angles where the interaction is always repulsive, although the strength of the repulsion can be strongly dependent on the orientation with respect to the polarization field. We present a study of the zero energy two-body problem which allows us to find the scattering length of the interaction and to build a suitable Jastrow many-body wave function that will be used as a trial wave function for Monte Carlo simulations of the bulk two-dimensional system of bosonic dipoles. In the first part of this work we have studied the low-density dipolar Bose gas and we find that the anisotropy has an almost negligible impact on the ground state properties of the many-body system in the universal regime where the scattering length governs the physics of the system. We also show that scaling in the gas parameter persists in the dipolar case up to values where other isotropic interactions with the same scattering length yield different predictions. We also evaluate the excitation spectrum of the dipolar Bose gas in the context of the Feynman approximation and compare the results obtained with the Bogoliubov ones. As expected, we find that these two approximations agree at very low densities, while they start to deviate from each other as the density increases. When the density of the system is increased we find that the behavior of the system depends on the value of the polarization angle of the dipolar moments of the system. At large densities and moderate values of the polarization angle the system undergoes a first-order quantum phase transition from a gas and a crystal phase. We also find that the anisotropy of the dipole-dipole potential causes an elongation of the crystalline lattice of the system in the direction where the interaction is stronger. At large polarization angles and moderate densities the system undergoes a second-order quantum phase transition from a gas to a stripe phase. Interestingly, the critical exponents of this second order transition are nearly independent of the tilting angle and are compatible with the 3D Ising and 3D XY model universality classes within the statistical uncertainty of our simulations. Finally, at high densities and large tilting angles the system shows a first order phase transition between the crystal and stripe phases. The slope of this transition curve is extremely large indicating that, due to the anisotropy of the interaction, the crystal phase of the system is no longer stable if the dipole - dipole potential is highly anisotropic. We consider the ground state of a bilayer system of dipolar bosons, which is a configuration consisting in the continement of the particles in two paralel planes by means of a trapping potential. We consider the simplest situation where dipole moments are oriented by an external field in the direction perpendicular to the parallel planes. Quantum Monte Carlo methods are used to calculate the ground-state energy, the one-body and two-body density matrix as a function of the separation between layers. We find that by decreasing the interlayer distance for fixed value of the strength of the dipolar interaction, the behavior of all the physical observables studied are compatible with the existence of a second order phase transition modulated by the inter-layer distance. In this sense, the results presented in this work are in good agreement with some previous studies of dipolar gases in a bilayer setup.

Book Superfluid States of Matter

Download or read book Superfluid States of Matter written by Boris V. Svistunov and published by CRC Press. This book was released on 2015-04-15 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the State of the Art in Superfluidity and SuperconductivitySuperfluid States of Matter addresses the phenomenon of superfluidity/superconductivity through an emergent, topologically protected constant of motion and covers topics developed over the past 20 years. The approach is based on the idea of separating universal classical-field superf

Book Novel Superfluids

    Book Details:
  • Author : K. H. Bennemann
  • Publisher : International Monographs on Ph
  • Release : 2014
  • ISBN : 0198719264
  • Pages : 657 pages

Download or read book Novel Superfluids written by K. H. Bennemann and published by International Monographs on Ph. This book was released on 2014 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 of Novel Superfluids continues the presentation of recent results on superfluids, including novel metallic systems, superfluid liquids, and atomic/molecular gases of bosons and fermions, particularly when trapped in optical lattices. Since the discovery of superconductivity (Leyden, 1911), superfluid 4He (Moscow and Cambridge, 1937), superfluid 3He (Cornell, 1972), and observation of Bose-Einstein Condensation (BEC) of a gas (Colorado and MIT, 1995), the phenomenon of superfluidity has remained one of the most important topics in physics. Again and again, novel superfluids yield surprising and interesting behaviors. The many classes of metallic superconductors, including the high temperature perovskite-based oxides, MgB2, organic systems, and Fe-based pnictides, continue to offer challenges. The technical applications grow steadily. What the temperature and field limits are remains illusive. Atomic nuclei, neutron stars and the Universe itself all involve various aspects of superfluidity, and the lessons learned have had a broad impact on physics as a whole.

Book Bose   Einstein Condensation in Dilute Gases

Download or read book Bose Einstein Condensation in Dilute Gases written by C. J. Pethick and published by Cambridge University Press. This book was released on 2008-09-11 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since an atomic Bose-Einstein condensate, predicted by Einstein in 1925, was first produced in the laboratory in 1995, the study of ultracold Bose and Fermi gases has become one of the most active areas in contemporary physics. This book explains phenomena in ultracold gases from basic principles, without assuming a detailed knowledge of atomic, condensed matter, and nuclear physics. This new edition has been revised and updated, and includes new chapters on optical lattices, low dimensions, and strongly-interacting Fermi systems. This book provides a unified introduction to the physics of ultracold atomic Bose and Fermi gases for advanced undergraduate and graduate students, as well as experimentalists and theorists. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problems are included at the end of each chapter.

Book Fundamentals and New Frontiers of Bose Einstein Condensation

Download or read book Fundamentals and New Frontiers of Bose Einstein Condensation written by Masahito Ueda and published by World Scientific. This book was released on 2010 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of and new developments in gaseous Bosendash;Einstein condensation. It begins with a review of fundamental concepts and theorems, and introduces basic theories describing Bose-Einstein condensation (BEC). It then discusses some recent topics such as fast-rotating BEC, spinor and dipolar BEC, low-dimensional BEC, balanced and imbalanced fermionic superfluidity including BCS-BEC crossover and unitary gas, and p-wave superfluidity.

Book The Mathematics of the Bose Gas and its Condensation

Download or read book The Mathematics of the Bose Gas and its Condensation written by Elliott H. Lieb and published by Springer Science & Business Media. This book was released on 2005-06-16 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a unique survey of the mathematically rigorous results about the quantum-mechanical many-body problem that have been obtained by the authors in the past seven years. It addresses a topic that is not only rich mathematically, using a large variety of techniques in mathematical analysis, but is also one with strong ties to current experiments on ultra-cold Bose gases and Bose-Einstein condensation. The book provides a pedagogical entry into an active area of ongoing research for both graduate students and researchers. It is an outgrowth of a course given by the authors for graduate students and post-doctoral researchers at the Oberwolfach Research Institute in 2004. The book also provides a coherent summary of the field and a reference for mathematicians and physicists active in research on quantum mechanics.

Book Theory of Quantum Liquids

    Book Details:
  • Author : Philippe Nozieres
  • Publisher : Westview Press
  • Release : 1994-06-21
  • ISBN : 0201408414
  • Pages : 210 pages

Download or read book Theory of Quantum Liquids written by Philippe Nozieres and published by Westview Press. This book was released on 1994-06-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published as two separate volumes, The Theory of Quantum Liquids is a classic text that attempts to describe the qualitative and unifying aspects of an extremely broad and diversified field. Volume I deals with ‘normal’ Fremi liquids, such as 3He and electrons in metals. Volume II consists of a detailed treatment of Bose condensation and liquid 4He, including the development of a Bose liquid theory and a microscopic basis for the two-fluid model, and the description of the elementary excitations of liquid HeII.

Book Transport and Turbulence in Quasi Uniform and Versatile Bose Einstein Condensates

Download or read book Transport and Turbulence in Quasi Uniform and Versatile Bose Einstein Condensates written by Gauthier Guillaume and published by Springer Nature. This book was released on 2020-09-26 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancing the experimental study of superfluids relies on increasingly sophisticated techniques. We develop and demonstrate the loading of Bose-Einstein condensates (BECs) into nearly arbitrary trapping potentials, with a resolution improved by a factor of seven when compared to reported systems. These advanced control techniques have since been adopted by several cold atoms labs around the world. How this BEC system was used to study 2D superfluid dynamics is described. In particular, negative temperature vortex states in a two-dimensional quantum fluid were observed. These states were first predicted by Lars Onsager 70 years ago and have significance to 2D turbulence in quantum and classical fluids, long-range interacting systems, and defect dynamics in high-energy physics. These experiments have established dilute-gas BECs as the prototypical system for the experimental study of point vortices and their nonequilibrium dynamics. We also developed a new approach to superfluid circuitry based on classical acoustic circuits, demonstrating its conceptual and quantitative superiority over previous lumped-element models. This has established foundational principles of superfluid circuitry that will impact the design of future transport experiments and new generation quantum devices, such as atomtronics circuits and superfluid sensors.

Book Excitations in a Bose condensed Liquid

Download or read book Excitations in a Bose condensed Liquid written by Allan Griffin and published by Cambridge University Press. This book was released on 1993-08-19 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gives an up-to-date, systematic account of the microscopic theory of Bose-condensed fluids developed since the late 1950s. In contrast to the usual phenomenological discussions of superfluid 4He, the present treatment is built on the pivotal role of the Bose broken symmetry and a Bose condensate. The many-body formalism is developed, with emphasis on the one- and two-particle Green's functions and their relation to the density response function. These are all coupled together by the Bose broken symmetry, which provides the basis for understanding the elementary excitations and response functions in the hydrodynamic and collisionless regions. It also explains the difference between excitations in the superfluid and normal phases. Chapter 4 gives the first critical assessment of the experimental evidence for a Bose condensate in liquid 4He, based on high-momentum neutron scattering data.

Book Bose Condensed Gases at Finite Temperatures

Download or read book Bose Condensed Gases at Finite Temperatures written by Allan Griffin and published by Cambridge University Press. This book was released on 2009-02-19 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of Bose–Einstein condensation (BEC) in trapped ultracold atomic gases in 1995 has led to an explosion of theoretical and experimental research on the properties of Bose-condensed dilute gases. The first treatment of BEC at finite temperatures, this book presents a thorough account of the theory of two-component dynamics and nonequilibrium behaviour in superfluid Bose gases. It uses a simplified microscopic model to give a clear, explicit account of collective modes in both the collisionless and collision-dominated regions. Major topics such as kinetic equations, local equilibrium and two-fluid hydrodynamics are introduced at an elementary level. Explicit predictions are worked out and linked to experiments. Providing a platform for future experimental and theoretical studies on the finite temperature dynamics of trapped Bose gases, this book is ideal for researchers and graduate students in ultracold atom physics, atomic, molecular and optical physics and condensed matter physics.

Book Introduction to Superfluidity

Download or read book Introduction to Superfluidity written by Andreas Schmitt and published by Springer. This book was released on 2014-07-15 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superfluidity – and closely related to it, superconductivity – are very general phenomena that can occur on vastly different energy scales. Their underlying theoretical mechanism of spontaneous symmetry breaking is even more general and applies to a multitude of physical systems. In these lecture notes, a pedagogical introduction to the field-theory approach to superfluidity is presented. The connection to more traditional approaches, often formulated in a different language, is carefully explained in order to provide a consistent picture that is useful for students and researchers in all fields of physics. After introducing the basic concepts, such as the two-fluid model and the Goldstone mode, selected topics of current research are addressed, such as the BCS-BEC crossover and Cooper pairing with mismatched Fermi momenta.