Download or read book Analytics in Healthcare written by Christo El Morr and published by Springer. This book was released on 2019-01-21 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical introduction to healthcare analytics that does not require a background in data science or statistics. It presents the basics of data, analytics and tools and includes multiple examples of their applications in the field. The book also identifies practical challenges that fuel the need for analytics in healthcare as well as the solutions to address these problems. In the healthcare field, professionals have access to vast amount of data in the form of staff records, electronic patient record, clinical findings, diagnosis, prescription drug, medical imaging procedure, mobile health, resources available, etc. Managing the data and analyzing it to properly understand it and use it to make well-informed decisions can be a challenge for managers and health care professionals. A new generation of applications, sometimes referred to as end-user analytics or self-serve analytics, are specifically designed for non-technical users such as managers and business professionals. The ability to use these increasingly accessible tools with the abundant data requires a basic understanding of the core concepts of data, analytics, and interpretation of outcomes. This book is a resource for such individuals to demystify and learn the basics of data management and analytics for healthcare, while also looking towards future directions in the field.
Download or read book Healthcare Data Analytics written by Chandan K. Reddy and published by CRC Press. This book was released on 2015-06-23 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Download or read book Healthcare Analytics Made Simple written by Vikas (Vik) Kumar and published by Packt Publishing Ltd. This book was released on 2018-07-31 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.
Download or read book Big Data Analytics in Healthcare written by Anand J. Kulkarni and published by Springer Nature. This book was released on 2019-10-01 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.
Download or read book Healthcare Analytics for Quality and Performance Improvement written by Trevor L. Strome and published by John Wiley & Sons. This book was released on 2013-10-02 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improve patient outcomes, lower costs, reduce fraud—all with healthcare analytics Healthcare Analytics for Quality and Performance Improvement walks your healthcare organization from relying on generic reports and dashboards to developing powerful analytic applications that drive effective decision-making throughout your organization. Renowned healthcare analytics leader Trevor Strome reveals in this groundbreaking volume the true potential of analytics to harness the vast amounts of data being generated in order to improve the decision-making ability of healthcare managers and improvement teams. Examines how technology has impacted healthcare delivery Discusses the challenge facing healthcare organizations: to leverage advances in both clinical and information technology to improve quality and performance while containing costs Explores the tools and techniques to analyze and extract value from healthcare data Demonstrates how the clinical, business, and technology components of healthcare organizations (HCOs) must work together to leverage analytics Other industries are already taking advantage of big data. Healthcare Analytics for Quality and Performance Improvement helps the healthcare industry make the most of the precious data already at its fingertips for long-overdue quality and performance improvement.
Download or read book Demystifying Big Data and Machine Learning for Healthcare written by Prashant Natarajan and published by CRC Press. This book was released on 2017-02-15 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Download or read book Healthcare Analytics written by Ross M. Mullner and published by Routledge. This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive, practical guide which looks at the advantages and limitations of new data analysis techniques being introduced across public health and administration services. The Affordable Care Act (ACT) and free market reforms in healthcare are generating a rapid change of pace. The "electronification" of medical records from paper to digital, which is required to meet the meaningful use standards set forth by the Act, is advancing what and how information can be analyzed. Coupled with the advent of more computing power and big data analytics and techniques, practitioners now more than ever need to stay on top of these trends. This book presents a comprehensive look at healthcare analytics from population data to geospatial analysis using current case studies and data analysis examples in health. This resource will appeal to undergraduate and graduate students in health administration and public health. It will benefit healthcare professionals and administrators in nursing and public health, as well as medical students who are interested in the future of data within healthcare.
Download or read book Analytics in Healthcare An Introduction written by Raymond A. Gensinger, Jr., MD, CPHIMS, FHIMSS, Editor and published by HIMSS. This book was released on 2014 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytics in healthcare: An introduction product details : 1) It gives clear insights about healthcare analytics. 2) This is helpful for both student and staff. 3) Includes data governance and DELTA analytics maturity model. 4) Quick and manageable to read.
Download or read book Introduction to Deep Learning for Healthcare written by Cao Xiao and published by Springer Nature. This book was released on 2021-11-11 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’ increasing use. The authors present deep learning case studies on all data described. Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching. This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.
Download or read book Data Analytics in Biomedical Engineering and Healthcare written by Kun Chang Lee and published by Academic Press. This book was released on 2020-10-18 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Download or read book Transforming Healthcare Analytics written by Michael N. Lewis and published by John Wiley & Sons. This book was released on 2020-03-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-life examples of how to apply intelligence in the healthcare industry through innovative analytics Healthcare analytics offers intelligence for making better healthcare decisions. Identifying patterns and correlations contained in complex health data, analytics has applications in hospital management, patient records, diagnosis, operating and treatment costs, and more. Helping healthcare managers operate more efficiently and effectively. Transforming Healthcare Analytics: The Quest for Healthy Intelligence shares real-world use cases of a healthcare company that leverages people, process, and advanced analytics technology to deliver exemplary results. This book illustrates how healthcare professionals can transform the healthcare industry through analytics. Practical examples of modern techniques and technology show how unified analytics with data management can deliver insight-driven decisions. The authors—a data management and analytics specialist and a healthcare finance executive—share their unique perspectives on modernizing data and analytics platforms to alleviate the complexity of the healthcare, distributing capabilities and analytics to key stakeholders, equipping healthcare organizations with intelligence to prepare for the future, and more. This book: Explores innovative technologies to overcome data complexity in healthcare Highlights how analytics can help with healthcare market analysis to gain competitive advantage Provides strategies for building a strong foundation for healthcare intelligence Examines managing data and analytics from end-to-end, from diagnosis, to treatment, to provider payment Discusses the future of technology and focus areas in the healthcare industry Transforming Healthcare Analytics: The Quest for Healthy Intelligence is an important source of information for CFO’s, CIO, CTO, healthcare managers, data scientists, statisticians, and financial analysts at healthcare institutions.
Download or read book R for Health Data Science written by Ewen Harrison and published by CRC Press. This book was released on 2020-12-31 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.
Download or read book Applications of Big Data in Healthcare written by Ashish Khanna and published by Elsevier. This book was released on 2021-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data. Provides case studies that illustrate the business processes underlying the use of big data and deep learning health analytics to improve health care delivery Supplies readers with a foundation for further specialized study in clinical analysis and data management Includes links to websites, videos, articles and other online content to expand and support the primary learning objectives for each major section of the book
Download or read book Data Analytics in Healthcare Research written by Ryan Sandefer and published by . This book was released on 2015-12-08 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analytics in Healthcare written by Ray Gensinger and published by CRC Press. This book was released on 2021-02-25 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The editors of the HIMSS Books' best-seller Health: From Smartphones to Smart Systems have returned to deliver an expansive survey of the initiatives, innovators, and technologies driving the patient-centered mobile healthcare revolution. mHealth Innovation: Best Practices from the Mobile Frontier explores the promise of mHealth as a balance between emerging technologies and process innovations leading to improved outcomes-with the ultimate aim of creating a patient-centered and consumer-driven healthcare ecosystem. Examining the rapidly changing mobile healthcare environment from myriad perspectives, the book includes a comprehensive survey of the current-state ecosystem-app development, interoperability, security, standards, organizational and governmental policy, innovation, next-generation solutions, and mBusiness-and 20 results-driven, world-spanning case studies covering behavior change, patient engagement, patient-provider decision making, mobile gaming, mobile prescription therapy, home monitoring, mobile-to-mobile online delivery, access to care, app certification and quality evaluations, mixed media campaigns, and much more.