EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book New Splitting Iterative Methods for Solving Multidimensional Neutron Transport Equations

Download or read book New Splitting Iterative Methods for Solving Multidimensional Neutron Transport Equations written by Jacques Tagoudjeu and published by Universal-Publishers. This book was released on 2011-04 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on iterative methods for the treatment of the steady state neutron transport equation in slab geometry, bounded convex domain of Rn (n = 2,3) and in 1-D spherical geometry. We introduce a generic Alternate Direction Implicit (ADI)-like iterative method based on positive definite and m-accretive splitting (PAS) for linear operator equations with operators admitting such splitting. This method converges unconditionally and its SOR acceleration yields convergence results similar to those obtained in presence of finite dimensional systems with matrices possessing the Young property A. The proposed methods are illustrated by a numerical example in which an integro-differential problem of transport theory is considered. In the particular case where the positive definite part of the linear equation operator is self-adjoint, an upper bound for the contraction factor of the iterative method, which depends solely on the spectrum of the self-adjoint part is derived. As such, this method has been successfully applied to the neutron transport equation in slab and 2-D cartesian geometry and in 1-D spherical geometry. The self-adjoint and m-accretive splitting leads to a fixed point problem where the operator is a 2 by 2 matrix of operators. An infinite dimensional adaptation of minimal residual and preconditioned minimal residual algorithms using Gauss-Seidel, symmetric Gauss-Seidel and polynomial preconditioning are then applied to solve the matrix operator equation. Theoretical analysis shows that the methods converge unconditionally and upper bounds of the rate of residual decreasing which depend solely on the spectrum of the self-adjoint part of the operator are derived. The convergence of theses solvers is illustrated numerically on a sample neutron transport problem in 2-D geometry. Various test cases, including pure scattering and optically thick domains are considered.

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1974 with total page 1298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems

Download or read book Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems written by Sergey I. Kabanikhin and published by Walter de Gruyter. This book was released on 2013-04-09 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider dynamic types of inverse problems in which the additional information is given by the trace of the direct problem on a (usually time-like) surface of the domain. They discuss theoretical and numerical background of the finite-difference scheme inversion, the linearization method, the method of Gel'fand-Levitan-Krein, the boundary control method, and the projection method and prove theorems of convergence, conditional stability, and other properties of the mentioned methods.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Iterative Methods

Download or read book Applied Iterative Methods written by Louis A. Hageman and published by Elsevier. This book was released on 2014-06-28 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Iterative Methods

Book Innovative Methods for Numerical Solutions of Partial Differential Equations

Download or read book Innovative Methods for Numerical Solutions of Partial Differential Equations written by P. L. Roe and published by World Scientific. This book was released on 2002 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of 20 review articles dedicated to Prof. Philip Roe on the occasion of his 60th birthday and in appreciation of his original contributions to computational fluid dynamics. The articles, written by leading researchers in the field, cover many topics, including theory and applications, algorithm developments and modern computational techniques for industry. Contents: OC A One-Sided ViewOCO: The Real Story (B van Leer); Collocated Upwind Schemes for Ideal MHD (K G Powell); The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina's Flux Splitting (R P Fedkiw et al.); A Finite Element Based Level-Set Method for Multiphase Flows (B Engquist & A-K Tornberg); The GHOST Fluid Method for Viscous Flows (R P Fedkiw & X-D Liu); Factorizable Schemes for the Equations of Fluid Flow (D Sidilkover); Evolution Galerkin Methods as Finite Difference Schemes (K W Morton); Fluctuation Distribution Schemes on Adjustable Meshes for Scalar Hyperbolic Equations (M J Baines); Superconvergent Lift Estimates Through Adjoint Error Analysis (M B Giles & N A Pierce); Somewhere between the LaxOCoWendroff and Roe Schemes for Calculating Multidimensional Compressible Flows (A Lerat et al.); Flux Schemes for Solving Nonlinear Systems of Conservation Laws (J M Ghidaglia); A LaxOCoWendroff Type Theorem for Residual Schemes (R Abgrall et al.); Kinetic Schemes for Solving SaintOCoVenant Equations on Unstructured Grids (M O Bristeau & B Perthame); Nonlinear Projection Methods for Multi-Entropies NavierOCoStokes Systems (C Berthon & F Coquel); A Hybrid Fluctuation Splitting Scheme for Two-Dimensional Compressible Steady Flows (P De Palma et al.); Some Recent Developments in Kinetic Schemes Based on Least Squares and Entropy Variables (S M Deshpande); Difference Approximation for Scalar Conservation Law. Consistency with Entropy Condition from the Viewpoint of Oleinik's E-Condition (H Aiso); Lessons Learned from the Blast Wave Computation Using Overset Moving Grids: Grid Motion Improves the Resolution (K Fujii). Readership: Researchers and graduate students in numerical and computational mathematics in engineering."

Book Handbook of Numerical Analysis

Download or read book Handbook of Numerical Analysis written by Philippe G. Ciarlet and published by Gulf Professional Publishing. This book was released on 1990 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications

Book Godunov Methods

    Book Details:
  • Author : E.F. Toro
  • Publisher : Springer Science & Business Media
  • Release : 2001-12-31
  • ISBN : 9780306466014
  • Pages : 1100 pages

Download or read book Godunov Methods written by E.F. Toro and published by Springer Science & Business Media. This book was released on 2001-12-31 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford, in October 1999, to commemorate the 70th birthday of the Russian mathematician Sergei K. Godunov. The central theme of this book is numerical methods for hyperbolic conservation laws following Godunov's key ideas contained in his celebrated paper of 1959. Hyperbolic conservation laws play a central role in mathematical modelling in several distinct disciplines of science and technology. Application areas include compressible, single (and multiple) fluid dynamics, shock waves, meteorology, elasticity, magnetohydrodynamics, relativity, and many others. The successes in the design and application of new and improved numerical methods of the Godunov type for hyperbolic conservation laws in the last twenty years have made a dramatic impact in these application areas. The 97 papers cover a very wide range of topics, such as design and analysis of numerical schemes, applications to compressible and incompressible fluid dynamics, multi-phase flows, combustion problems, astrophysics, environmental fluid dynamics, and detonation waves. This book will be a reference book on the subject of numerical methods for hyperbolic partial differential equations for many years to come.All contributions are self-contained but do contain a review element. There is a key paper by Peter Sweby in which a general overview of Godunov methods is given. This contribution is particularly suitable for beginners on the subject. This book is unique: it contains virtually everything concerned with Godunov-type methods for conservation laws. As such it will be of particular interest to academics (applied mathematicians, numerical analysts, engineers, environmental scientists, physicists, and astrophysicists) involved in research on numerical methods for partial differential equations; scientists and engineers concerned with new numerical methods and applications to scientific and engineering problems e.g., mechanical engineers, aeronautical engineers, meteorologists; and academics involved in teaching numerical methods for partial differential equations at the postgraduate level.

Book Computational Optimal Transport

Download or read book Computational Optimal Transport written by Gabriel Peyre and published by Foundations and Trends(r) in M. This book was released on 2019-02-12 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.

Book Handbook of Numerical Methods for Hyperbolic Problems

Download or read book Handbook of Numerical Methods for Hyperbolic Problems written by Remi Abgrall and published by Elsevier. This book was released on 2017-01-16 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage

Book Finite Element Methods for Computational Fluid Dynamics

Download or read book Finite Element Methods for Computational Fluid Dynamics written by Dmitri Kuzmin and published by SIAM. This book was released on 2014-12-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.?Finite Element Methods for Computational Fluid Dynamics: A Practical Guide?explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.?

Book Handbook of Shock Waves  Three Volume Set

Download or read book Handbook of Shock Waves Three Volume Set written by Gabi Ben-Dor and published by Elsevier. This book was released on 2000-10-18 with total page 2188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Shock Waves contains a comprehensive, structured coverage of research topics related to shock wave phenomena including shock waves in gases, liquids, solids, and space. Shock waves represent an extremely important physical phenomena which appears to be of special practical importance in three major fields: compressible flow (aerodynamics), materials science, and astrophysics. Shock waves comprise a phenomenon that occurs when pressure builds to force a reaction, i.e. sonic boom that occurs when a jet breaks the speed of sound.This Handbook contains experimental, theoretical, and numerical results which never before appeared under one cover; the first handbook of its kind.The Handbook of Shock Waves is intended for researchers and engineers active in shock wave related fields. Additionally, R&D establishments, applied science & research laboratories and scientific and engineering libraries both in universities and government institutions. As well as, undergraduate and graduate students in fluid mechanics, gas dynamics, and physics. Key Features* Ben-Dor is known as one of the founders of the field of shock waves* Covers a broad spectrum of shock wave research topics* Provides a comprehensive description of various shock wave related subjects* First handbook ever to include under one separate cover: experimental, theoretical, and numerical results

Book Fifth International Congress of Chinese Mathematicians

Download or read book Fifth International Congress of Chinese Mathematicians written by Lizhen Ji and published by American Mathematical Soc.. This book was released on 2012 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.

Book SIAM Journal on Scientific Computing

Download or read book SIAM Journal on Scientific Computing written by and published by . This book was released on 1996 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Numerical Methods for Singularly Perturbed Differential Equations

Download or read book Robust Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2008-09-17 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

Book Parallel Algorithms in Computational Science and Engineering

Download or read book Parallel Algorithms in Computational Science and Engineering written by Ananth Grama and published by Springer Nature. This book was released on 2020-07-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1990 with total page 1422 pages. Available in PDF, EPUB and Kindle. Book excerpt: