EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis of Granular Flow in a Pebble bed Nuclear Reactor

Download or read book Analysis of Granular Flow in a Pebble bed Nuclear Reactor written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a ma jor impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30° or 60° . We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

Book Granular Dynamics in Pebble Bed Reactor Cores

Download or read book Granular Dynamics in Pebble Bed Reactor Cores written by Michael Robert Laufer and published by . This book was released on 2013 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study focused on developing a better understanding of granular dynamics in pebble bed reactor cores through experimental work and computer simulations. The work completed includes analysis of pebble motion data from three scaled experiments based on the annular core of the Pebble Bed Fluoride Salt-Cooled High- Temperature Reactor (PB-FHR). The experiments are accompanied by the development of a new discrete element simulation code, GRECO, which is designed to offer a simple user interface and simplified two-dimensional system that can be used for iterative purposes in the preliminary phases of core design. The results of this study are focused on the PB-FHR, but can easily be extended for gas-cooled reactor designs. Experimental results are presented for three Pebble Recirculation Experiments (PREX). PREX 2 and 3.0 are conventional gravity-dominated granular systems based on the annular PB-FHR core design for a 900 MWth commercial prototype plant and a 16 MWth test reactor, respectively. Detailed results are presented for the pebble velocity field, mixing at the radial zone interfaces, and pebble residence times. A new Monte Carlo algorithm was developed to study the residence time distributions of pebbles in different radial zones. These dry experiments demonstrated the basic viability of radial pebble zoning in cores with diverging geometry before pebbles reach the active core. Results are also presented from PREX 3.1, a scaled facility that uses simulant materials to evaluate the impact of coupled fluid drag forces on the granular dynamics in the PB-FHR core. PREX 3.1 was used to collect first of a kind pebble motion data in a multidimensional porous media flow field. Pebble motion data were collected for a range of axial and cross fluid flow configurations where the drag forces range from half the buoyancy force up to ten times greater than the buoyancy force. Detailed analysis is presented for the pebble velocity field, mixing behavior, and residence time distributions for each fluid flow configuration. The axial flow configurations in PREX 3.1 showed small changes in pebble motion compared to a reference case with no fluid flow and showed similar overall behavior to PREX 3.0. This suggests that dry experiments can be used for core designs with uniform one-dimensional coolant flow early in the design process at greatly reduced cost. Significant differences in pebble residence times were observed in the cross fluid flow configurations, but these were not accompanied by an overall horizontal diffusion bias. Radial zones showed only a small shift in position due to mixing in the diverging region and remained stable in the active core. The results from this study support the overall viability of the annular PB-FHR core by demonstrating consistent granular flow behavior in the presence of complex reflector geometries and multidimensional fluid flow fields. GRECO simulations were performed for each of the experiments in this study in order to develop a preliminary validation basis and to understand for which applications the code can provide useful analysis. Overall, the GRECO simulation results showed excellent agreement with the gravity-dominated PREX experiments. Local velocity errors were found to be generally within 10-15% of the experimental data. Average radial zone interface positions were predicted within two pebble diameters. GRECO simulations over predicted the amount of mixing around the average radial zone interface position and therefore can be treated as a conservative upper bound when used in neutronics analysis. Residence time distributions from the GRECO velocity data based on the Monte Carlo algorithm closely matched those derived from the experiment velocity statistics. GRECO simulation results for PREX 3.1 with coupled drag forces showed larger errors compared to the experimental data, particularly in the cases with cross fluid flow. The large discrepancies suggest that GRECO results in systems with coupled fluid drag forces cannot be used with high confidence at this point and future development work on coupled pebble and fluid dynamics with multidimensional fluid flow fields is required.

Book Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core

Download or read book Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core written by Shengyao Jiang and published by Springer Nature. This book was released on 2020-11-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.

Book Gas Particle and Granular Flow Systems

Download or read book Gas Particle and Granular Flow Systems written by Nan Gui and published by Elsevier. This book was released on 2019-11-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas-Particle and Granular Flow Systems: Coupled Numerical Methods and Applications breaks down complexities, details numerical methods (including basic theory, modeling and techniques in programming), and provides researchers with an introduction and starting point to each of the disciplines involved. As the modeling of gas-particle and granular flow systems is an emerging interdisciplinary field of study involving mathematics, numerical methods, computational science, and mechanical, chemical and nuclear engineering, this book provides an ideal resource for new researchers who are often intimidated by the complexities of fluid-particle, particle-particle, and particle-wall interactions in many disciplines. Presents the most recent advances in modeling of gas-particle and granular flow systems Features detailed and multidisciplinary case studies at the conclusion of each chapter to underscore key concepts Discusses coupled methods of particle and granular flow systems theory and includes advanced modeling tools and numerical techniques

Book Pebble Fuel Handling and Reactivity Control for Salt Cooled High Temperature Reactors

Download or read book Pebble Fuel Handling and Reactivity Control for Salt Cooled High Temperature Reactors written by and published by . This book was released on 2015 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance. This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.

Book Reactor Fuels  Materials and Systems under Extreme Environments

Download or read book Reactor Fuels Materials and Systems under Extreme Environments written by Wenzhong Zhou and published by Frontiers Media SA. This book was released on 2022-03-25 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Pebble bed Pebble Motion

Download or read book Pebble bed Pebble Motion written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine the contact forces and the lengths of motion in contact. This information combined with the proper wear coefficients can be used to determine the dust production from mechanical wear. These new capabilities enhance the understanding of PBRs, and the capabilities of the code will allow future improvements in understanding.

Book Reactor Physics  Methods and Applications

Download or read book Reactor Physics Methods and Applications written by Tengfei Zhang and published by Frontiers Media SA. This book was released on 2022-06-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nuclear Fuel Cycle Science and Engineering

Download or read book Nuclear Fuel Cycle Science and Engineering written by Ian Crossland and published by Elsevier. This book was released on 2012-09-21 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nuclear fuel cycle is characterised by the wide range of scientific disciplines and technologies it employs. The development of ever more integrated processes across the many stages of the nuclear fuel cycle therefore confronts plant manufacturers and operators with formidable challenges. Nuclear fuel cycle science and engineering describes both the key features of the complete nuclear fuel cycle and the wealth of recent research in this important field. Part one provides an introduction to the nuclear fuel cycle. Radiological protection, security and public acceptance of nuclear technology are considered, along with the economics of nuclear power. Part two goes on to explore materials mining, enrichment, fuel element design and fabrication for the uranium and thorium nuclear fuel cycle. The impact of nuclear reactor design and operation on fuel element irradiation is the focus of part three, including water and gas-cooled reactors, along with CANDU and Generation IV designs. Finally, part four reviews spent nuclear fuel and radioactive waste management. With its distinguished editor and international team of expert contributors, Nuclear fuel cycle science and engineering provides an important review for all those involved in the design, fabrication, use and disposal of nuclear fuels as well as regulatory bodies and researchers in this field. Provides a comprehensive and holistic review of the complete nuclear fuel cycle Reviews the issues presented by the nuclear fuel cycle, including radiological protection and security, public acceptance and economic analysis Discusses issues at the front-end of the fuel cycle, including uranium and thorium mining, enrichment and fuel design and fabrication

Book Liutex and Its Applications in Turbulence Research

Download or read book Liutex and Its Applications in Turbulence Research written by Chaoqun Liu and published by Academic Press. This book was released on 2020-10-29 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. Provides an accurate mathematical definition of vortices Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence Explains the term “Rortex as a mathematically defined rigid rotation of fluids or vortex Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence

Book Advances in Applied Mechanics

Download or read book Advances in Applied Mechanics written by Stephane P.A. Bordas and published by Academic Press. This book was released on 2021-11-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Applied Mechanics, Volume 54 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters on Advanced geometry representations and tools for microstructural and multiscale modelling, Material Point Method: overview and challenges ahead, From Experimental Modeling of Shotcrete to Numerical Simulations of Tunneling, Mechanics of Hydrogel-Based Bioprinting: From 3D to 4D, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Applied Mechanics series

Book Color Centers in Semiconductors for Quantum Applications

Download or read book Color Centers in Semiconductors for Quantum Applications written by Joel Davidsson and published by Linköping University Electronic Press. This book was released on 2021-02-08 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.

Book Ecological Sustainability

    Book Details:
  • Author : Robert B. Northrop
  • Publisher : CRC Press
  • Release : 2016-04-19
  • ISBN : 1466565136
  • Pages : 542 pages

Download or read book Ecological Sustainability written by Robert B. Northrop and published by CRC Press. This book was released on 2016-04-19 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex systems is a new field of science studying how parts of a system give rise to the collective behaviors of the system, and how the system interacts with its environment. This book examines the complex systems involved in environmental sustainability, and examines the technologies involved to help mitigate human impacts, such as renewable ene

Book Ecology of Cyanobacteria II

    Book Details:
  • Author : Brian A. Whitton
  • Publisher : Springer Science & Business Media
  • Release : 2012-07-05
  • ISBN : 9400738552
  • Pages : 753 pages

Download or read book Ecology of Cyanobacteria II written by Brian A. Whitton and published by Springer Science & Business Media. This book was released on 2012-07-05 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cyanobacteria have existed for 3.5 billion years, yet they are still the most important photosynthetic organisms on the planet for cycling carbon and nitrogen. The ecosystems where they have key roles range from the warmer oceans to many Antarctic sites. They also include dense nuisance growths in nutrient-rich lakes and nitrogen-fixers which aid the fertility of rice-fields and many soils, especially the biological soil crusts of arid regions. Molecular biology has in recent years provided major advances in our understanding of cyanobacterial ecology. Perhaps for more than any other group of organisms, it is possible to see how the ecology, physiology, biochemistry, ultrastructure and molecular biology interact. This all helps to deal with practical problems such as the control of nuisance blooms and the use of cyanobacterial inocula to manage semi-desert soils. Large-scale culture of several organisms, especially "Spirulina" (Arthrospira), for health food and specialist products is increasingly being expanded for a much wider range of uses. In view of their probable contribution to past oil deposits, much attention is currently focused on their potential as a source of biofuel. Please visit http://extras.springer.com/ to view Extra Materials belonging to this volume. This book complements the highly successful Ecology of Cyanobacteria and integrates the discoveries of the past twelve years with the older literature.

Book PHYSOR 2010

Download or read book PHYSOR 2010 written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Music and Probability

Download or read book Music and Probability written by David Temperley and published by MIT Press. This book was released on 2007 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the application of Bayesian probabilistic modeling techniques to musical issues, including the perception of key and meter.

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: