EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis of Charge Transport

Download or read book Analysis of Charge Transport written by Joseph W. Jerome and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the mathematical aspects of semiconductor modeling, with particular attention focused on the drift-diffusion model. The aim is to provide a rigorous basis for those models which are actually employed in practice, and to analyze the approximation properties of discretization procedures. The book is intended for applied and computational mathematicians, and for mathematically literate engineers, who wish to gain an understanding of the mathematical framework that is pertinent to device modeling. The latter audience will welcome the introduction of hydrodynamic and energy transport models in Chap. 3. Solutions of the nonlinear steady-state systems are analyzed as the fixed points of a mapping T, or better, a family of such mappings, distinguished by system decoupling. Significant attention is paid to questions related to the mathematical properties of this mapping, termed the Gummel map. Compu tational aspects of this fixed point mapping for analysis of discretizations are discussed as well. We present a novel nonlinear approximation theory, termed the Kras nosel'skii operator calculus, which we develop in Chap. 6 as an appropriate extension of the Babuska-Aziz inf-sup linear saddle point theory. It is shown in Chap. 5 how this applies to the semiconductor model. We also present in Chap. 4 a thorough study of various realizations of the Gummel map, which includes non-uniformly elliptic systems and variational inequalities. In Chap.

Book Two dimensional Analysis of Charge Transport in Charge coupled Devices

Download or read book Two dimensional Analysis of Charge Transport in Charge coupled Devices written by Tim-wah Luk and published by . This book was released on 1978 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Study and Analysis of Charge Transport in Biomolecule quantum Dot Complexes

Download or read book Theoretical Study and Analysis of Charge Transport in Biomolecule quantum Dot Complexes written by Viswanath Sankar and published by . This book was released on 2006 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Modeling of Charge Transport in a GaAs CCD  microform

Download or read book Analysis and Modeling of Charge Transport in a GaAs CCD microform written by Shankar Pennathur and published by National Library of Canada = Bibliothèque nationale du Canada. This book was released on 1991 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanocrystal Quantum Dots

Download or read book Nanocrystal Quantum Dots written by Victor I. Klimov and published by CRC Press. This book was released on 2017-12-19 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Book An Analysis of Charge Transport and Equilibrium in the Global Atmosphere

Download or read book An Analysis of Charge Transport and Equilibrium in the Global Atmosphere written by Edward Lyle Shreve and published by . This book was released on 1969 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magneto ballistic Charge Transport in Semiconductors

Download or read book Magneto ballistic Charge Transport in Semiconductors written by Shuzheng Liu and published by . This book was released on 1995 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Qualitative Analysis of Hydrodynamical Models of Charge Transport in Semiconductors

Download or read book Qualitative Analysis of Hydrodynamical Models of Charge Transport in Semiconductors written by Aleksandr Mikhaĭlovich Blokhin and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last decades mathematical simulation of physical phenomena in semiconductor devices becomes an actual and rapidly developing area of applied mathematics. Progress in microelectronic technologies enables constructing semiconductor devices of extremely small size such that simplified analytic models can hardly be used for analysis and design of modern semiconductor devices. The reason is that traditional simplifying assumptions which form the background of such models may be essentially broken in modern components of integral schemes. This book discusses the dynamics in this process.

Book Carrier Mobility in Organic Charge Transport Materials

Download or read book Carrier Mobility in Organic Charge Transport Materials written by Jason U. Wallace and published by . This book was released on 2009 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Electrokinetic Particle Transport in Micro  Nanofluidics

Download or read book Electrokinetic Particle Transport in Micro Nanofluidics written by Shizhi Qian and published by CRC Press. This book was released on 2012-06-19 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the

Book Trap Limited Charge Transport Analysis in Poly 3 hexylthiophene

Download or read book Trap Limited Charge Transport Analysis in Poly 3 hexylthiophene written by Hippolyte Hirwa and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Qualitative Analysis of Hydrodynamical Models of Charge Transport in Semiconductors

Download or read book Qualitative Analysis of Hydrodynamical Models of Charge Transport in Semiconductors written by Aleksandr Mikhaĭlovich Blokhin and published by . This book was released on 2011 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last decades mathematical simulation of physical phenomena in semiconductor devices becomes an actual and rapidly developing area of applied mathematics. Progress in microelectronic technologies enables constructing semiconductor devices of extremely small size such that simplified analytic models can hardly be used for analysis and design of modern semiconductor devices. The reason is that traditional simplifying assumptions which form the background of such models may be essentially broken in modern components of integral schemes. This book discusses the dynamics in this process. (Imprint: Nova)

Book Nanoscale Electrochemistry

Download or read book Nanoscale Electrochemistry written by Andrew J. Wain and published by Elsevier. This book was released on 2021-09-14 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid–liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, such as sensing and electrochemical imaging, that are familiar to the traditional electrochemist but whose extension to the nanoscale is nontrivial and reveals new chemical information. The subsequent three chapters present exciting new electrochemical methodologies that are specific to the nanoscale, including "single entity"-based methods and surface-enhanced electrochemical spectroscopy. These techniques, now sufficiently mature for exposition, have paved the way for major developments in our understanding of solid–liquid interfaces and continue to push electrochemical analysis toward atomic-length scales. The final three chapters address the rich overlap between electrochemistry and nanomaterials science, highlighting notable applications in energy conversion and storage. This is an important reference for both academic and industrial researchers who are seeking to learn more about how nanoscale electrochemistry has developed in recent years. Outlines the major applications of nanoscale electrochemistry in energy storage, spectroscopy and biology Summarizes the major principles of nanoscale electrochemical systems, exploring how they differ from similar system types Discusses the major challenges of electrochemical analysis at the nanoscale

Book Transport Phenomena Fundamentals

Download or read book Transport Phenomena Fundamentals written by Joel L. Plawsky and published by CRC Press. This book was released on 2020-02-27 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition includes more worked examples within each chapter and adds confidence-building problems at the end of each chapter. Some numerical solutions are included in an appendix for students to check their comprehension of key concepts. Additional resources online include exercises that can be practiced using a wide range of software programs available for simulating engineering problems, such as, COMSOL®, Maple®, Fluent, Aspen, Mathematica, Python and MATLAB®, lecture notes, and past exams. This edition incorporates a wider range of problems to expand the utility of the text beyond chemical engineering. The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions. Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the full, microscopic equations governing the phenomena to simplify the models and develop engineering solutions, and it introduces macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.

Book Understanding Microstructure and Charge Transport in Semicrystalline Polythiophenes

Download or read book Understanding Microstructure and Charge Transport in Semicrystalline Polythiophenes written by Leslie Hendrix Jimison and published by Stanford University. This book was released on 2011 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconducting polymers are a promising class of organic electronic materials, with the potential to have a large impact in the field of macroelectronics. In this thesis, we focus on understanding the relationship between microstructure and charge transport in semicrystalline polythiophenes. A method is presented for the measurement of complete pole figures of polymer thin films using an area detector, allowing for the first time quantitative characterization of crystalline texture and degree of crystallinity. Thin film transistors are used to measure electrical characteristics, and charge transport behavior is modeled according to the Mobility Edge (ME) model. These characterization methods are first used to investigate the effect of substrate surface treatment and thermal annealing on the microstructure of polythiophene thin films, and the effect of microstructural details on charge transport. Next, we investigate the semicrystalline microstructure in confined polythiophene films. Pole figures are used to quantify a decrease in the degree of crystallinity of films with decreasing thickness, accompanied by an improvement in crystalline texture. Next, we investigate the influence of the degree of regioregularity, molecular weight and the processing solvent on microstructure (degree of crystallinity and texture) and charge transport in high mobility P3HT thin films. Surprisingly, when processing conditions are optimized, even a polymer with moderate regioregularity can form a highly textured film with high charge carrier mobility. Finally, we use films of P3HT with engineered, anisotropic in-plane microstructure to understand the importance and mechanism of transport across grain boundaries in these semicrystalline films. Results from this study provide the first experimental evidence for the application of a percolation model for charge transport in high molecular weight semicrystalline polymer semiconductors. Understanding how characteristics of the polymer as well as details of the processing conditions can affect the film microstructure and device performance is important for future materials design and device fabrication.