EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sparse Graphical Modeling for High Dimensional Data

Download or read book Sparse Graphical Modeling for High Dimensional Data written by Faming Liang and published by CRC Press. This book was released on 2023-08-02 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Test Data Engineering

Download or read book Test Data Engineering written by Kojiro Shojima and published by Springer Nature. This book was released on 2022-08-13 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first technical book that considers tests as public tools and examines how to engineer and process test data, extract the structure within the data to be visualized, and thereby make test results useful for students, teachers, and the society. The author does not differentiate test data analysis from data engineering and information visualization. This monograph introduces the following methods of engineering or processing test data, including the latest machine learning techniques: classical test theory (CTT), item response theory (IRT), latent class analysis (LCA), latent rank analysis (LRA), biclustering (co-clustering), and Bayesian network model (BNM). CTT and IRT are methods for analyzing test data and evaluating students’ abilities on a continuous scale. LCA and LRA assess examinees by classifying them into nominal and ordinal clusters, respectively, where the adequate number of clusters is estimated from the data. Biclustering classifies examinees into groups (latent clusters) while classifying items into fields (factors). Particularly, the infinite relational model discussed in this book is a biclustering method feasible under the condition that neither the number of groups nor the number of fields is known beforehand. Additionally, the local dependence LRA, local dependence biclustering, and bicluster network model are methods that search and visualize inter-item (or inter-field) network structure using the mechanism of BNM. As this book offers a new perspective on test data analysis methods, it is certain to widen readers’ perspective on test data analysis.

Book Categorical Data Analysis

Download or read book Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2013-04-08 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.

Book Pattern Recognition and Image Analysis

Download or read book Pattern Recognition and Image Analysis written by Jordi Vitria and published by Springer Science & Business Media. This book was released on 2011-06-01 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2011, held in Las Palmas de Gran Canaria, Spain, in June 2011. The 34 revised full papers and 58 revised poster papers presented were carefully reviewed and selected from 158 submissions. The papers are organized in topical sections on computer vision; image processing and analysis; medical applications; and pattern recognition.

Book Introduction to High Dimensional Statistics

Download or read book Introduction to High Dimensional Statistics written by Christophe Giraud and published by CRC Press. This book was released on 2021-08-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

Book Analyzing Dependent Data with Vine Copulas

Download or read book Analyzing Dependent Data with Vine Copulas written by Claudia Czado and published by Springer. This book was released on 2019-05-14 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a step-by-step introduction to the class of vine copulas, their statistical inference and applications. It focuses on statistical estimation and selection methods for vine copulas in data applications. These flexible copula models can successfully accommodate any form of tail dependence and are vital to many applications in finance, insurance, hydrology, marketing, engineering, chemistry, aviation, climatology and health. The book explains the pair-copula construction principles underlying these statistical models and discusses how to perform model selection and inference. It also derives simulation algorithms and presents real-world examples to illustrate the methodological concepts. The book includes numerous exercises that facilitate and deepen readers’ understanding, and demonstrates how the R package VineCopula can be used to explore and build statistical dependence models from scratch. In closing, the book provides insights into recent developments and open research questions in vine copula based modeling. The book is intended for students as well as statisticians, data analysts and any other quantitatively oriented researchers who are new to the field of vine copulas. Accordingly, it provides the necessary background in multivariate statistics and copula theory for exploratory data tools, so that readers only need a basic grasp of statistics and probability.

Book International Conference on Computational and Information Sciences  ICCIS  2014

Download or read book International Conference on Computational and Information Sciences ICCIS 2014 written by and published by DEStech Publications, Inc. This book was released on 2014-11-11 with total page 1356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 6th International Conference on Computational and Information Sciences (ICCIS2014) will be held in NanChong, China. The 6th International Conference on Computational and Information Sciences (ICCIS2014)aims at bringing researchers in the areas of computational and information sciences to exchange new ideas and to explore new ground. The goal of the conference is to push the application of modern computing technologies to science, engineering, and information technologies.Following the success of ICCIS2004,ICCIS2010 and ICCIS2011,ICCIS2012,ICCIS2013,ICCIS2014 conference will consist of invited keynote presentations and contributed presentations of latest developments in computational and information sciences. The 2014 International Conference on Computational and Information Sciences (ICCIS 2014), now in its sixth run, has become one of the premier conferences in this dynamic and exciting field. The goal of ICCIS is to catalyze the communications among various communities in computational and information sciences. ICCIS provides a venue for the participants to share their recent research and development, to seek for collaboration resources and opportunities, and to build professional networks.

Book Principles and Methods for Data Science

Download or read book Principles and Methods for Data Science written by and published by Elsevier. This book was released on 2020-05-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Principles and Methods for Data Science

Book Introduction to Property Testing

Download or read book Introduction to Property Testing written by Oded Goldreich and published by Cambridge University Press. This book was released on 2017-11-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive and authoritative introduction to property testing, the study of super-fast algorithms for the structural analysis of large quantities of data in order to determine global properties. This book can be used both as a reference book and a textbook, and includes numerous exercises.

Book Statistical Foundations of Data Science

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Book Synergies of Soft Computing and Statistics for Intelligent Data Analysis

Download or read book Synergies of Soft Computing and Statistics for Intelligent Data Analysis written by Rudolf Kruse and published by Springer Science & Business Media. This book was released on 2012-09-13 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness --- various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.

Book Modern Statistical Methods for Health Research

Download or read book Modern Statistical Methods for Health Research written by Yichuan Zhao and published by Springer Nature. This book was released on 2021-10-14 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the voices of leading experts in the frontiers of biostatistics, biomedicine, and the health sciences to discuss the statistical procedures, useful methods, and novel applications in biostatistics research. It also includes discussions of potential future directions of biomedicine and new statistical developments for health research, with the intent of stimulating research and fostering the interactions of scholars across health research related disciplines. Topics covered include: Health data analysis and applications to EHR data Clinical trials, FDR, and applications in health science Big network analytics and its applications in GWAS Survival analysis and functional data analysis Graphical modelling in genomic studies The book will be valuable to data scientists and statisticians who are working in biomedicine and health, other practitioners in the health sciences, and graduate students and researchers in biostatistics and health.

Book Big Data in Omics and Imaging

Download or read book Big Data in Omics and Imaging written by Momiao Xiong and published by CRC Press. This book was released on 2017-12-01 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Omics and Imaging: Association Analysis addresses the recent development of association analysis and machine learning for both population and family genomic data in sequencing era. It is unique in that it presents both hypothesis testing and a data mining approach to holistically dissecting the genetic structure of complex traits and to designing efficient strategies for precision medicine. The general frameworks for association analysis and machine learning, developed in the text, can be applied to genomic, epigenomic and imaging data. FEATURES Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data Provides tools for high dimensional data reduction Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection Provides real-world examples and case studies Will have an accompanying website with R code The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases– from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.

Book Machine Behavior Design And Analysis

Download or read book Machine Behavior Design And Analysis written by Yinyan Zhang and published by Springer Nature. This book was released on 2020-03-13 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we present our systematic investigations into consensus in multi-agent systems. We show the design and analysis of various types of consensus protocols from a multi-agent perspective with a focus on min-consensus and its variants. We also discuss second-order and high-order min-consensus. A very interesting topic regarding the link between consensus and path planning is also included. We show that a biased min-consensus protocol can lead to the path planning phenomenon, which means that the complexity of shortest path planning can emerge from a perturbed version of min-consensus protocol, which as a case study may encourage researchers in the field of distributed control to rethink the nature of complexity and the distance between control and intelligence. We also illustrate the design and analysis of consensus protocols for nonlinear multi-agent systems derived from an optimal control formulation, which do not require solving a Hamilton-Jacobi-Bellman (HJB) equation. The book was written in a self-contained format. For each consensus protocol, the performance is verified through simulative examples and analyzed via mathematical derivations, using tools like graph theory and modern control theory. The book’s goal is to provide not only theoretical contributions but also explore underlying intuitions from a methodological perspective.

Book Statistics and Machine Learning Methods for EHR Data

Download or read book Statistics and Machine Learning Methods for EHR Data written by Hulin Wu and published by CRC Press. This book was released on 2020-12-10 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.

Book Journal of the American Statistical Association

Download or read book Journal of the American Statistical Association written by and published by . This book was released on 2007 with total page 1542 pages. Available in PDF, EPUB and Kindle. Book excerpt: