EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis and Interpretation of a Hydraulic Fracture Treatment Using Offset Vertical Observation Wells and a Hydraulic Fracture Simulator

Download or read book Analysis and Interpretation of a Hydraulic Fracture Treatment Using Offset Vertical Observation Wells and a Hydraulic Fracture Simulator written by Christopher Adam Griffith and published by . This book was released on 2015 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of hydraulic fracture treatments requires incorporating a wide range of data in order to make useful inferences about fracture properties. For example, microseismic monitoring and production decline analysis can be used to obtain the hydraulic fracture half-length, which is an important parameter for field development. The challenge in using these tools is that the methods used for analysis are open to interpretation and can make it difficult to rely on the results. This thesis integrates data from four horizontal wells that were hydraulically fractured in an unconventional shale play and results from a 2-dimensional hydraulic fracture simulator in order to make qualitative observations about fracture properties. The importance of the data set hinges on nine vertical observation wells that recorded pressure vs. time during the hydraulic fracture treatments. The observation wells were located at different distances and depths from the horizontal wells. This is important because it removes some of the ambiguity associated with making interpretations from microseismic data, production decline analysis, or other methods. Results from modeling and the data set indicated the following: (1) the networks of fractures created from these treatments were volumetric and complex, illustrated by the microseismic data and the pressure signals recorded at the observation wells, (2) microseismicity was generally successful in delineating where fluid progressed during pumping, (3) however, flow of fluid into fractures stimulated during previous stages was aseismic, a manifestation of the Kaiser effect, and (4) during long term production, fluid was not produced from the more distant parts of the reservoir that were pressurized and stimulated during the fracturing treatment. To explain these four observations, we hypothesize that proppant was not transported to the regions of the stimulated rock volume that were most distant from the stimulated wells. The stimulated, but unpropped, fractures in this region evidently lost much of their conductivity after closure that they did not contribute significantly to long term production.

Book Analysis and Interpretation of a Hydraulic Fracture Treatment Using Offset Vertical Observations Wells and a Hydraulic Fracture Simulator

Download or read book Analysis and Interpretation of a Hydraulic Fracture Treatment Using Offset Vertical Observations Wells and a Hydraulic Fracture Simulator written by Christopher Griffith and published by . This book was released on 2015 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulating Gas Production from Hydraulic Fracture Networks

Download or read book Simulating Gas Production from Hydraulic Fracture Networks written by Jennifer Lynn Reese and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Barnett shale has become an extremely successful unconventional natural gas development, mainly due to the optimization of hydraulic fracturing treatments. The ideal stimulation job for the Barnett is a slickwater treatment with low proppant concentrations, because this type of waterfrac is believed to create longer and more complex fracture networks, contacting much greater surface areas of the reservoir while minimizing the fracture face damage through the use of low viscosity fluids with no gel solids. Fracture mapping research in the Barnett shale has shown that the hydraulic fracturing of vertical wells produces an extremely complex network of fractures, and the work presented here focuses on modeling these fracture networks to gain a better understanding of how hydraulic fractures perform in the Barnett. Over one hundred simulation runs were conducted with models of varying fairway sizes, aspect ratios, fracture spacings, total network lengths, and fracture conductivities in an effort to better understand the impact each parameter has on well performance. Results were analyzed according to the classic parameters of stimulated reservoir volume, fracture spacing and total fracture network length. Observed trends and production plateaus in the simulation data establish a way to optimize the stimulation treatment and production for a given well. Fracture conductivity is considered to be of secondary importance in the hydraulic fracturing of very low permeability formations, but the extensive network structures of the Barnett shale are so large that fracture conductivity becomes important again. Since small increases in fracture conductivity can yield significant production increases, operators in the Barnett shale can focus on fracture conductivity as a way to optimize stimulation jobs and yield efficient production wells. The simulation results were compared to field data gathered from a production database, and showed that the simulation model can duplicate both the shape and range of the cumulative production profiles observed in the field, thus validating the simulation modeling process. The fact that the simulation runs model the observed field production provides further evidence that Barnett shale wells actually produce from a complex fracture network and not from a single planar fracture.

Book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity

Download or read book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity written by Mengting Li and published by Cuvillier Verlag. This book was released on 2018-12-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.

Book Essentials of Hydraulic Fracturing

Download or read book Essentials of Hydraulic Fracturing written by Ralph W. Veatch and published by Pennwell Books. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing was first developed in the United States during the 1940s and has since spread internationally. A proven technology that is reaching deeper and tighter formations, hydraulic fracturing now delivers hydrocarbons from fields previously considered economically unviable. Essentials of Hydraulic Fracturing focuses on consolidating the fundamental basics of fracturing technology with advances in extended horizontal wellbores and fracturing applications. It provides the essentials required to understand fracturing behavior and offers advice for applying that knowledge to fracturing treatment design and application. Essentials of Hydraulic Fracturingis a long-awaited text for petroleum engineering students, industry-wide hydraulic fracturing training courses or seminars, and practicing fracturing treatment engineers. Features include: Understanding of fracture propagation geometry and fracture conductivity and how it affects treatment results A focus on safety and environmental prudence Economic optimization of fracturing treatments Fracturing fluid system and propping agent performance Important considerations in designing the fracture treatment for both vertical and horizontal wellbores Algorithms and examples pertinent to treatment design and analysis Pre- and post-fracturing approaches and diagnostics for evaluating treatment performance Hydraulic fracturing model construction and applicability Comparative design examples Construction of spreadsheet calculations key to treatment designs

Book Hydraulic fracture geometry characterization based on distributed fiber optic strain measurements

Download or read book Hydraulic fracture geometry characterization based on distributed fiber optic strain measurements written by Kan Wu and published by Elsevier. This book was released on 2024-06-05 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fiber optic-based measurements are innovative tools for the oil and gas industry to utilize in monitoring wells in a variety of applications including geothermal activity. Monitoring unconventional reservoirs is still challenging due to complex subsurface conditions and current research focuses on qualitative interpretation of field data. Hydraulic Fracture Geometry Characterization from Fiber Optic-Based Strain Measurements delivers a critical reference for reservoir and completion engineers to better quantify the propagation process and evolution of fracture geometry with a forward model and novel inversion model. The reference reviews different fiber optic-based temperature, acoustic, and strain measurements for monitoring fracture behaviors and includes advantages and limitations of each measurement, giving engineers a better understanding of measurements applied in all types of subsurface formations. Stress/strain rate responses on rock deformation are given a holistic approach, including guidelines and an automatic algorithm for identification of fracture hits. Last, a novel inversion model is introduced to show how fracture geometry can be used for optimization on well placement decisions. Supported by case studies, Hydraulic Fracture Geometry Characterization from Fiber Optic-Based Strain Measurements gives today's engineers better understanding of all complex subsurface measurements through fiber optic technology. - Examine the basics of distributed fiber optic strain measurements - Conduct a detailed analysis of strain responses observed in both horizontal and vertical monitoring wells - Present a systematic approach for interpreting strain data measured in the field - Highlight the significant insights and values that can be derived from the field measured strain dataset - Support monitoring and modeling for subsurface energy extraction and safe storage

Book Simulating Hydraulic Fracture Networks in the Barnett Shale

Download or read book Simulating Hydraulic Fracture Networks in the Barnett Shale written by Jennifer Lynn Reese and published by . This book was released on 2007 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation in Hydraulic Fracturing  Multiphysics Theory and Applications

Download or read book Numerical Simulation in Hydraulic Fracturing Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Book Hydraulic Fracture Modeling

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs. - Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods - Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics - Provides today's petroleum engineer with model validation tools backed by real-world case studies

Book Hydraulic Fracturing in Unconventional Reservoirs

Download or read book Hydraulic Fracturing in Unconventional Reservoirs written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2019-06-18 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing

Book Hydraulic Fracturing

    Book Details:
  • Author : Michael Berry Smith
  • Publisher : CRC Press
  • Release : 2015-12-16
  • ISBN : 1466566922
  • Pages : 793 pages

Download or read book Hydraulic Fracturing written by Michael Berry Smith and published by CRC Press. This book was released on 2015-12-16 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing effectively busts the myths associated with hydraulic fracturing. It explains how to properly engineer and optimize a hydraulically fractured well by selecting the right materials, evaluating the economic benefits of the project, and ensuring the safety and success of the people, environment, and equipment. From data estimation

Book Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations

Download or read book Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations written by Ahmed Alzahabi and published by CRC Press. This book was released on 2018-07-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale gas and/or oil play identification is subject to many screening processes for characteristics such as porosity, permeability, and brittleness. Evaluating shale gas and/or oil reservoirs and identifying potential sweet spots (portions of the reservoir rock that have high-quality kerogen content and brittle rock) requires taking into consideration multiple rock, reservoir, and geological parameters that govern production. The early determination of sweet spots for well site selection and fracturing in shale reservoirs is a challenge for many operators. With this limitation in mind, Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations develops an approach to improve the industry’s ability to evaluate shale gas and oil plays and is structured to lead the reader from general shale oil and gas characteristics to detailed sweet-spot classifications. The approach uses a new candidate selection and evaluation algorithm and screening criteria based on key geomechanical, petrophysical, and geochemical parameters and indices to obtain results consistent with existing shale plays and gain insights on the best development strategies going forward. The work introduces new criteria that accurately guide the development process in unconventional reservoirs in addition to reducing uncertainty and cost.

Book Applied Concepts in Fractured Reservoirs

Download or read book Applied Concepts in Fractured Reservoirs written by John C. Lorenz and published by John Wiley & Sons. This book was released on 2020-01-03 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core

Book Analysis of Hydraulic Fracture Growth and Segmentation

Download or read book Analysis of Hydraulic Fracture Growth and Segmentation written by Bethany Grace Rysak and published by . This book was released on 2021 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 6TW slant core is part of the multidisciplinary Hydraulic Fracture Test Site (HFTS1) project in the Midland Basin. The slant core made a close pass by two horizontal wells on an 11-well pad and has yielded new insight into fracture networks created by the hydraulic fracturing process. Approximately ~600 ft of core was recovered through the Wolfcamp A and B, with fracture characterization identifying 375 hydraulic fractures (trending E-W), and 309 calcite-sealed natural fractures (Set 1 trending NE-SW; Set 2 trending WNW-ESE). Initial observations showed that the number of hydraulic fractures found in core was higher than the number estimated to have been created via the completion processes. This abundance may be closely tied to the examples of twist-hackle segmentation, diversion, and bifurcation seen in core. These features can be used to determine propagation direction and help build a clearer picture of fracture network growth and geometry. To further investigate the impact of these features on our current understanding of hydraulic fracture propagation, this research was divided into four parts, those being: 1) Analysis of hydraulic fractures in the slant core, 2) Observation of lab-generated hydraulic fracture morphology, 3) Observation of natural hydraulic fracture morphology in the field, and 4) Building of a 3D reservoir model for the HFTS1 pad to run fracture forward modeling. The key implications of this work provide a greater understanding of hydraulic fracture network propagation in the subsurface, and could have wider applications for evaluation, completion, production, and fracture modeling techniques in unconventional reservoirs

Book Mechanics of Hydraulic Fracturing

Download or read book Mechanics of Hydraulic Fracturing written by Ching H. Yew and published by Gulf Professional Publishing. This book was released on 2014-09-25 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised to include current components considered for today's unconventional and multi-fracture grids, Mechanics of Hydraulic Fracturing, Second Edition explains one of the most important features for fracture design — the ability to predict the geometry and characteristics of the hydraulically induced fracture. With two-thirds of the world's oil and natural gas reserves committed to unconventional resources, hydraulic fracturing is the best proven well stimulation method to extract these resources from their more remote and complex reservoirs. However, few hydraulic fracture models can properly simulate more complex fractures. Engineers and well designers must understand the underlying mechanics of how fractures are modeled in order to correctly predict and forecast a more advanced fracture network. Updated to accommodate today's fracturing jobs, Mechanics of Hydraulic Fracturing, Second Edition enables the engineer to: - Understand complex fracture networks to maximize completion strategies - Recognize and compute stress shadow, which can drastically affect fracture network patterns - Optimize completions by properly modeling and more accurately predicting for today's hydraulic fracturing completions - Discusses the underlying mechanics of creating a fracture from the wellbore - Enhanced to include newer modeling components such as stress shadow and interaction of hydraulic fracture with a natural fracture, which aids in more complex fracture networks - Updated experimental studies that apply to today's unconventional fracturing cases

Book Fracturing Horizontal Wells

Download or read book Fracturing Horizontal Wells written by Mohamed Y. Soliman and published by McGraw Hill Professional. This book was released on 2016-04-21 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effectively Apply Modern Fracturing Methods in Horizontal Wells Improve productivity and maximize natural gas extraction using the practical information contained in this comprehensive guide. Written by world-renowned experts, Fracturing Horizontal Wells features complete details on the latest fracking tools and technologies. Illustrations, tables, and real-world examples are found throughout. Discover how to handle site selection and testing, build accurate simulations, and efficiently extract energy from horizontal sources, including shale formations. Environmental standards, regulatory compliance, and safety protocols are also included. Fracturing Horizontal Wells covers: • Fracture Stimulation of Horizontal Wells • Transitioning from Vertical to Horizontal Wellbores • Reservoir Engineering Aspects of Horizontal Wells • Reservoir Engineering Aspects of Fractured Horizontal Wells • Fracturing Horizontal Wells: Rock Mechanics Overview • Drilling of Horizontal Wells • Proppant and Proppant Transport • Fracture Diagnostic Testing • Interval Isolation • Horizontal Completion Fracturing Methods and Techniques • Use of Well Logging Measurements and Analysis for Fracturing Design • Fracture Treatment Diagnostics • Environmental Stewardship

Book Mechanics of Hydraulic Fracturing

Download or read book Mechanics of Hydraulic Fracturing written by Xi Zhang and published by John Wiley & Sons. This book was released on 2022-12-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.