Download or read book Introduction to Radiological Physics and Radiation Dosimetry written by Frank Herbert Attix and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.
Download or read book Radiation Protection and Dosimetry written by Michael G. Stabin and published by Springer Science & Business Media. This book was released on 2007-09-12 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive yet accessible overview of all relevant topics in the field of radiation protection (health physics). The text is organized to introduce the reader to basic principles of radiation emission and propagation, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. The author’s website contains materials for instructors including PowerPoint slides for lectures and worked-out solutions to end-of-chapter exercises. The book serves as an essential handbook for practicing health physics professionals.
Download or read book Fundamentals of Ionizing Radiation Dosimetry written by Pedro Andreo and published by John Wiley & Sons. This book was released on 2017-06-14 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fosters a thorough understand of radiation dosimetry concepts: detailed solutions to the exercises in the textbook Fundamentals of Ionizing Radiation Dosimetry!
Download or read book An Introduction to Radiation Dosimetry written by S. Lovell and published by Cambridge University Press. This book was released on 1979-09-13 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1979, this volume presents an elementary and, as far as is practicable, non-mathematical introduction to radiation dosimetry. Where it proved necessary to use mathematical notation, it was kept to a simple level. The volume treats dosimetry from first principles, dealing with the interaction of the various radiations with matter, then defining dosimetric quantities and units and showing how the more important ones are measured. It concludes with a brief chapter on radiation protection. Although a number of dosimetric systems are described in some detail the treatment is by no means encyclopaedic. SI units appear throughout, including some which were not yet in universal use when the book was first published. Where it was considered necessary, the older non-SI units were also defined and conversion factors were given.
Download or read book Introduction to Health Physics written by Herman Cember and published by . This book was released on 1992 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide offers students a background and basic understanding of the biophysical bases of radiation, radiation safety standards and the key factors in radiation protection. A revised and expanded edition, the book's contents include: radiation dosimetry, basic physical principles, biological effects of radiation, criticality control and radiation surveillance. The author also highlights new findings on non-ionizing radiation (laser and microwaves), computer use in dose calculation and dose limit recommendations from the International Commission on Radiation Protection. It aims to provide students with a framework and practical introduction to scientific principles and the problem-solving approaches needed in daily radiation protection practice.
Download or read book Radiation Dosimetry written by Gerald J. Hine and published by Elsevier. This book was released on 2013-09-12 with total page 947 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation, as well as radiation effects in malignant tissues, levels of radiation, and mechanism of radiation effects on living cells. The publication takes a look at ionization chambers, Geiger-Mueller counters and proportional counters, scintillation detectors, and photographic film dosimetry, Discussions focus on calibration and standardization techniques, scintillating materials and their light yield, scintillation detector dosimetry of neutrons, and the physics of counters. The text also ponders on chemical and colorimetric indicators and survey instruments and pocket dosimeters. The selection is a dependable reference for readers interested in radiation dosimetry.
Download or read book Advanced Radiation Protection Dosimetry written by Shaheen Dewji and published by CRC Press. This book was released on 2019-04-02 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many radiation protection scientists and engineers use dose coefficients, few know the origin of those dose coefficients. This is the first book in over 40 years to address the topic of radiation protection dosimetry in intimate detail. Advanced Radiation Protection Dosimetry covers all methods used in radiation protection dosimetry, including advanced external and internal radiation dosimetry concepts and regulatory applications. This book is an ideal reference for both scientists and practitioners in radiation protection and students in graduate health physics and medical physics courses. Features: A much-needed book filling a gap in the market in a rapidly expanding area Contains the history, evolution, and the most up-to-date computational dosimetry models Authored and edited by internationally recognized authorities and subject area specialists Interrogates both the origins and methodologies of dose coefficient calculation Incorporates the latest international guidance for radiation dosimetry and protection
Download or read book Radiation Dosimetry Instrumentation and Methods 2001 written by Gad Shani and published by CRC Press. This book was released on 2017-11-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation dosimetry has made great progress in the last decade, mainly because radiation therapy is much more widely used. Since the first edition, many new developments have been made in the basic methods for dosimetry, i.e. ionization chambers, TLD, chemical dosimeters, and photographic films. Radiation Dosimetry: Instrumentation and Methods, Second Edition brings to the reader these latest developments. Written at a high level for medical physicists, engineers, and advanced dosimetrists, it concentrates only on evolvement during the last decade, relying on the first edition to provide the basics.
Download or read book Radiation Dosimetry Instrumentation and Methods written by Gad Shani and published by CRC Press. This book was released on 2000-12-28 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation dosimetry has made great progress in the last decade, mainly because radiation therapy is much more widely used. Since the first edition, many new developments have been made in the basic methods for dosimetry, i.e. ionization chambers, TLD, chemical dosimeters, and photographic films. Radiation Dosimetry: Instrumentation and Methods, Second Edition brings to the reader these latest developments. Written at a high level for medical physicists, engineers, and advanced dosimetrists, it concentrates only on evolvement during the last decade, relying on the first edition to provide the basics.
Download or read book Radiation Physics for Medical Physicists written by Ervin B. Podgorsak and published by Springer Science & Business Media. This book was released on 2010-02-02 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.
Download or read book Clinical 3D Dosimetry in Modern Radiation Therapy written by Ben Mijnheer and published by CRC Press. This book was released on 2017-10-31 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a complete overview of the principles, hardware, measurement methods, and clinical applications of three-dimensional dosimetry. Explains basic concepts with emphasis on 3D dose measurements and validation of 3D dose calculations as a key application of 3D dosimetry. Discusses accuracy requirements for 3D dosimetry in advanced radiotherapy as well as important topics such as audits, quality assurance, and testing. Presents state of the art detector and point detector instruments and systems, gel dosimetry, and electronic portal imaging device dosimetry. Addresses the main measurement approaches, from small-field dosimetry to 4D dosimetry, Monte Carlo techniques, and methods for quantifying differences in 3D dose distributions.
Download or read book Fundamentals of Nuclear Medicine Dosimetry written by Michael G. Stabin and published by Springer Science & Business Media. This book was released on 2008-01-15 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a leading international authority in the field, this book is ideal for physicians and residents in nuclear medicine who want to improve their knowledge in internal dosimetry. The text is a practical introduction that guides the reader through fundamental concepts in the calculation of radiation dose, including discussions of standardized models, methods of calculations, and available software applications. This comprehensive guide discusses too the biological effects of radiation on living systems. The book also includes an overview of regulatory aspects related to the radiation dosimetry of new radiopharmaceuticals.
Download or read book An Introduction to Radiation Chemistry written by John William Tranter Spinks and published by Wiley-Interscience. This book was released on 1990-05-24 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on radiation chemistry covers a number of topics, including the development of radiation chemistry, sources of high-energy radiation, dosimetry, organic materials and solids and the applications of high-energy radiation in chemical synthesis and in commercial processes.
Download or read book Optically Stimulated Luminescence Dosimetry written by L. Boetter-Jensen and published by Elsevier. This book was released on 2003-10-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.
Download or read book An Introduction to Medical Physics written by Muhammad Maqbool and published by Springer. This book was released on 2017-11-11 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book begins with the basic terms and definitions and takes a student, step by step, through all areas of medical physics. The book covers radiation therapy, diagnostic radiology, dosimetry, radiation shielding, and nuclear medicine, all at a level suitable for undergraduates. This title not only describes the basics concepts of the field, but also emphasizes numerical and mathematical problems and examples. Students will find An Introduction to Medical Physics to be an indispensible resource in preparations for further graduate studies in the field.
Download or read book Applied Physics of External Radiation Exposure written by Rodolphe Antoni and published by Springer. This book was released on 2016-12-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in different up to date references are presented in this book. The book deals also with accelerators, X-rays facilities, sealed sources, dosimetry, Monte Carlo simulation and radiation regulation. Each chapter is split in two parts depending on the level of details the readers want to focus on. The first part, accessible to a large public, provides a lot of simple examples to help understanding the physics concepts under radiation external exposure. The second part, called “Additional Information” is not mandatory; it aims on explaining topics more deeply, often using mathematical formulations. The book treats fundamental radiometric and dosimetric quantities to describe the interaction in materials under the aspects of absorbed dose processes in tissues. Definitions and applications on limited and operational radiation protection quantities are given. An important aspect are practical engineering tools in industrial, medical and research domains. Source characterization and shielding design are addressed. Also more ”exotic” topics, such as ultra intense laser and new generation accelerators, are treated. The state of the art is presented to help the reader to work with the book in a self-consistent way. The basic knowledge necessary to apply Monte Carlo methods in the field of radiation protection and dosimetry for external radiation exposure is provided. Coverage of topics such as variance reduction, pseudo-random number generation and statistic estimators make the book useful even to experienced Monte Carlo practitioners. Solved problems help the reader to understand the Monte Carlo process. The book is meant to be used by researchers, engineers and medical physicist. It is also valuable to technicians and students.
Download or read book Radiation Oncology Physics written by International Atomic Energy Agency and published by IAEA. This book was released on 2005 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.