EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Autoignition Characteristics of Diesel Fuel and Its Surrogates

Download or read book Autoignition Characteristics of Diesel Fuel and Its Surrogates written by Goutham Kukkadapu and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The design process for development of engines could be made faster and less expensive with the help of computations which help understanding the processes prevalent in internal combustion engines. Running engine simulations are challenging as they need to accurately capture the fluid dynamic and chemical kinetic processes that occur in an engine. A major challenge in simulating chemical kinetic processes is the complexity of the fuel chemistry: real fuels are complex mixtures whose composition determines their physical properties and reactivity. The behavior of these real fuels can be conveniently represented using simpler mixtures often called â€surrogates mixtures†that match the key properties of the real fuels. Successful modeling of the ignition of real fuel first requires the formulation of an appropriate surrogate mixture whose compositions are carefully chosen in order to best emulate the combustion properties of the targeted real fuel. Then a comprehensive chemical kinetic model developed based on the surrogate fuel is used to simulate the combustion process of the real fuel. The work presented in the current dissertation intends to systematically study the surrogate modeling of diesel fuels. The study has been conducted to understand the ignition of surrogate fuel constituents and fully blended diesel fuels. Autoignition of tetralin, 1-methylnaphthalene, iso-cetane, and n-dodecane, the constituents of diesel surrogates, are investigated in the current dissertation. Besides, ignition of binary blends of the surrogate constituents has also been studied to investigate the effects of blending on ignition when neat components are blended to formulate a surrogate fuel. Furthermore, the ignition of two fully blended research grade diesel fuels has also been conducted inorder to provide quality ignition delay data for development and validation of chemical kinetic models of kinetic fuels.

Book Autoignition Study of Diesel  Diesel Surrogates  and Dieselsurrogate Components at Low Temperature Combustion Conditions

Download or read book Autoignition Study of Diesel Diesel Surrogates and Dieselsurrogate Components at Low Temperature Combustion Conditions written by Mengyuan Wang and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of increasingly stringent engine emissions and fuel economy standards, there is an urgent need for developing future diesel engines with higher efficiency and lower emissions. Therefore, low temperature combustion is currently being pursued to develop new types of advanced diesel engines. Since low temperature combustion is more sensitive to chemical kinetics, the understanding of the autoignition characteristics of diesel fuels under low-to-intermediate temperatures becomes important. In order to achieve the goal of higher efficiency and lower emissions diesel engines, both experimental and computational investigations of diesel fuels at low-to-intermediate temperatures need to be conducted, as the experimental autoignition results help develop a comprehensive understanding of diesel ignition and provide a validation database for model development, and a comprehensive chemical kinetic model of diesel is also imperative for accurate prediction of ignition and emissions characteristics of diesel engines. Because diesel fuels contain hundreds, even thousands of species, and the composition of diesel is too complex to model, it is also necessary to develop surrogate fuels, which are simpler mixtures that include fuel components representative of hydrocarbon classes found in diesel fuels, and can capture the essential chemical/physical properties and performance characteristics of the target diesel fuel to sufficient accuracy. Therefore, the work presented in the current dissertation aims to gain better understandings and fill in gaps in fundamental combustion data of diesel-surrogate components and surrogate fuel mixtures relevant to diesel fuels. Autoignition of trans-decalin at low-to-intermediate temperatures has been investigated first to get a better understanding of its autoignition characteristics, and the development of a detailed chemical kinetic model of diesel surrogates has been benefited from the results of trans-decalin. The agreements of the developed diesel surrogate model have been tested by comparing with the current autoignition results of diesel surrogates, and possible sources of discrepancies between experimental and simulated results have also been investigated. Based on that, binary blends of iso-cetane and tetralin are further chosen for autoignition investigation to help find out possible reasons causing those discrepancies and to further benefit the refinement and development of comprehensive diesel surrogate models.

Book Ignition Delay at Various High Pressures  An Experimental Study

Download or read book Ignition Delay at Various High Pressures An Experimental Study written by Ritu Gaur and published by GRIN Verlag. This book was released on 2019-11-13 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research Paper (postgraduate) from the year 2019 in the subject Engineering - Chemical Engineering, , course: M.TECH, language: English, abstract: This work is an experimental study for the measurement of ignition delay characteristics of burning fuel sprays in cylindrical combustion chambers. It is carried out on hot air and high pressure. The objective of the study is to investigation the effect of hot air temperature and a well as high pressure on ignition delay of diesel fuel sprays. The effect of blending of n-Pentane with pure diesel was investigated. An experimental set up was design for this purpose with the emphasis on optical method for measurement of ignition delay at various pressures. The results presented here show that ignition delay of diesel fuel spray decreases with increase in the temperature and pressure of hot air. Results also show the effect of methyl group being more dominant at low ignition temperatures and that of alkyl group being more dominant at higher temperature. Blending of n-pentane with diesel fuel, increase its ignition delay at low ignition temperatures. However, as the concentration of blending fuel was increased beyond 30%, the ignition temperature increase. Ignition temperature for 40% pentane blends is much higher that the pure diesel.

Book Biojet Fuel  Current Technology and Future Prospect

Download or read book Biojet Fuel Current Technology and Future Prospect written by Arindam Kuila and published by Springer Nature. This book was released on with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diesel Surrogate Fuels for Engine Testing and Chemical Kinetic Modeling

Download or read book Diesel Surrogate Fuels for Engine Testing and Chemical Kinetic Modeling written by and published by . This book was released on 2016 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objectives of this work were to formulate, blend, and characterize a set of four ultra-low-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinderengine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30-liter batch was blended, and a number of the physical and chemical properties were measured. Lastly, this publication documents the surrogate fuel creation process and the results of the property measurements.

Book An Experimental and Modeling Study Investigating the Ignition Delay in a Military Diesel Engine Running Hexadecane  cetane  Fuel

Download or read book An Experimental and Modeling Study Investigating the Ignition Delay in a Military Diesel Engine Running Hexadecane cetane Fuel written by and published by . This book was released on 2013 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed-load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed-load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted without any kinetic mechanism calibration. The modeling results show that fuel-air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel's acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.

Book Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional  Ignition Quality  and Volatility Characteristics

Download or read book Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional Ignition Quality and Volatility Characteristics written by and published by . This book was released on 2012 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

Book Recent Progress in the Development of Diesel Surrogate Fuels

Download or read book Recent Progress in the Development of Diesel Surrogate Fuels written by and published by . This book was released on 2009 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

Book Experimental Study of Ignition Delay Characteristics for Conventional and Alternative Diesel and Jet Fuels Through Constant Volume Combustion Chamber

Download or read book Experimental Study of Ignition Delay Characteristics for Conventional and Alternative Diesel and Jet Fuels Through Constant Volume Combustion Chamber written by 康莫方 and published by . This book was released on 2020 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ignition delay Characteristics in Modified Open cup Apparatus of Several Fuels with Nitric Acid Oxidants Within Temperature Range 70 Degrees to 105 Degrees F

Download or read book Ignition delay Characteristics in Modified Open cup Apparatus of Several Fuels with Nitric Acid Oxidants Within Temperature Range 70 Degrees to 105 Degrees F written by Riley O. Miller and published by . This book was released on 1951 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Droplets and Sprays  Simple Models of Complex Processes

Download or read book Droplets and Sprays Simple Models of Complex Processes written by Sergei S. Sazhin and published by Springer Nature. This book was released on 2022-06-28 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book acts as a guide to simple models that describe some of the complex fluid dynamics, heat/mass transfer and combustion processes in droplets and sprays. Attention is focused mainly on the use of classical hydrodynamics, and a combination of kinetic and hydrodynamic models, to analyse the heating and evaporation of mono- and multi-component droplets. The models were developed for cases when small and large numbers of components are present in droplets. Some of these models are used for the prediction of time to puffing/micro-explosion of composite water/fuel droplets — processes that are widely used in combustion devices to stimulate disintegration of relatively large droplets into smaller ones. The predictions of numerical codes based on these models are validated against experimental results where possible. In most of the models, droplets are assumed to be spherical; some preliminary results of the generalisation of these models to the case of non-spherical droplets, approximating them as spheroids, are presented.

Book Novel Combustion Concepts for Sustainable Energy Development

Download or read book Novel Combustion Concepts for Sustainable Energy Development written by Avinash K Agarwal and published by Springer. This book was released on 2014-12-19 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

Book A Computational Investigation of Diesel and Biodiesel Combustion and NOx Formation in a Light duty Compression Ignition Engine

Download or read book A Computational Investigation of Diesel and Biodiesel Combustion and NOx Formation in a Light duty Compression Ignition Engine written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

Book Effect of Binary Fuel Blends on Compression Ignition Engine Characteristics

Download or read book Effect of Binary Fuel Blends on Compression Ignition Engine Characteristics written by Paramvir Singh and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diversified research in alternate sources arises become necessity due to higher consumption of fossil fuels along with their adverse impacts on the environment, even to the point of complete elimination of diesel from compression-ignition (CI) engines. Binary fuel blend (a blend of low and high viscous fuel) is one of the best environmentally friendly alternative in CI engines. Blending of methyl ester with edible and nonedible oils in different volumetric ratios has the potency to give a stable mixture and that can be used as a fuel in diesel engines. The main motive for the blending of two fuels is that the inferior properties of one biofuel remunerate from improved properties of the other fuel considerably improves the physicochemical properties of the blend. The present study provides comprehensive information on the emission and performance characteristics of binary biodiesel-oil fuel blends. Most researchers had suggested optimum blends from their respective studies that support capability for complete elimination of diesel from CI engines. Some researchers have used this binary fuel blend with minor adjustments to the engine parameters. These investigations have provided positive results. The comprehensive review concluded that binary fuel approach has potential to completely eliminate diesel from CI engines.

Book Chemical Kinetic Characterization of Autoignition and Combustion of Surrogate Diesel

Download or read book Chemical Kinetic Characterization of Autoignition and Combustion of Surrogate Diesel written by K. Seshadri and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A study was performed to elucidate the chemical-kinetic mechanism of combustion of toluene. The research was performed in collaboration Dr. Charles Westbrook and Dr. William Pitz at Lawrence Livermore National Laboratory (LLNL). A detailed chemical-kinetic mechanism for toluene developed at LLNL was employed. Numerical calculations were performed using this mechanism and the results were compared with experimental data obtained from premixed and nonpremixed systems. Under premixed conditions, predicted ignition delay times were compared with new experimental data obtained by I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc at Departement de Chime Physique des Reactions, CNRS-ENSIC, BP. 451, 1, rue Grandville, 51001 Nancy, France. Also, calculated species concentration histories were compared to experimental flow reactor data from the literature. Under nonpremixed conditions, critical conditions of extinction and autoignition were measured in strained laminar flows in the counterflow configuration. Numerical calculations were performed using the chemical-kinetic mechanism at conditions corresponding to those in the experiments. Critical conditions of extinction and autoignition are predicted and compared with the experimental data. Comparisons between the model predictions and experimental results of ignition delay times in shock tube, and extinction and autoignition in nonpremixed systems show that the chemical-kinetic mechanism predicts that toluene/air is overall less reactive than observed in the experiments. The principal objective of this research is to obtain a fundamental understanding of the physical and chemical mechanisms of autoignition and combustion of Diesel in nonpremixed systems. The major components of Diesel are straight-chain paraffins, branched-chain paraffins, cycloparaffins, and aromatics. The results of this research on toluene are expected to be useful in understanding the role of aromatics in combustion of Diesel.

Book Comparison of Ignition Delays and Liquid Penetrations of JP 8  Synthetic JP 8  and a JP 8 Surrogate Under Diesel Engine Conditions

Download or read book Comparison of Ignition Delays and Liquid Penetrations of JP 8 Synthetic JP 8 and a JP 8 Surrogate Under Diesel Engine Conditions written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : The U.S. Army and many NATO affiliates have adopted a 'one fuel forward fuel policy' (OFF). The goal of the OFF policy is reducing the logistics and cost involved with providing fuel for military vehicles. With this policy, the logical choice fuel is military grade jet petroleum, JP-8, because of the fuel constraints of turbo-jet engines. This requirement has made it necessary to run military compression ignited engines on JP-8. To reduce the Army's reliance on petroleum based fuels an alternative fuel, synthetic JP-8, derived from coal and made in the Fischer-Tropsch production method is allowed to be blended up to 50% with JP-8. The two fuels have varying cetane numbers of for 43.1 for JP-8 and 25 for the synthetic JP-8 which influence combustion characteristics. Therefore, the goal of the current work is to characterize the ignition characteristics of synthetic JP-8 as compared to the reference JP-8 under the same test conditions. A JP-8 surrogate fuel is also developed and compared against the baseline fuel in terms of both ignition behavior and liquid penetration. Testing is conducted in an optically accessible combustion vessel sweeping ambient temperatures and densities of 800 - 1100 K and 7.3 - 30.2 kg/m3, respectively. The resultant data is used in comparison of all three fuels in ignition delay and steady state liquid penetration characteristics. Correlations are also developed for calculating the ignition delay of both the JP-8 and the synthetic JP-8 fuel and is used to compare to the surrogate fuel and to compare to a pool of data from past work on JP-8. Results of these comparisons show a 50% increase in the ignition delay and a 10% shorter steady state liquid penetration of the low cetane value synthetic JP-8 over the baseline JP-8 fuel sample. Findings also show the surrogate matches the baseline fuel to within 10% for ignition delays but it over penetrates the baseline fuel by around 30% for liquid penetration.