EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Efficient Image Denoising Approach Based on Dictionary Learning

Download or read book An Efficient Image Denoising Approach Based on Dictionary Learning written by Mohammadreza Karimipoor and published by Infinite Study. This book was released on with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, a denoising method based on dictionary learning has been proposed. With the increasing use of digital images, the methods that can remove noise based on image content and not restrictedly based on statistical properties has been widely extended. The major weakness of dictionary learning methods is that all of these methods require a long training process and a very large storage memory for storing features extracted from the training images. In the proposed method, using the concept of sparse matrix and similarities between samples extracted of similar images and adaptive filters the training process of dictionary based on ideal images have been simplified. Finally Images are checked based on its content by implicit optimization of memory usage and image noise will be removed with a minimum loss of stored samples in existing dictionary. At the end, the proposed method is implemented and results are shown its capabilities in comparison with other methods.

Book Proceedings of World Conference on Artificial Intelligence  Advances and Applications

Download or read book Proceedings of World Conference on Artificial Intelligence Advances and Applications written by Ashish Kumar Tripathi and published by Springer Nature. This book was released on with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sparse and Redundant Representations

Download or read book Sparse and Redundant Representations written by Michael Elad and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.

Book Digital Technologies and Applications

Download or read book Digital Technologies and Applications written by Saad Motahhir and published by Springer Nature. This book was released on with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Vision     ECCV 2022 Workshops

Download or read book Computer Vision ECCV 2022 Workshops written by Leonid Karlinsky and published by Springer Nature. This book was released on 2023-02-15 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 8-volume set, comprising the LNCS books 13801 until 13809, constitutes the refereed proceedings of 38 out of the 60 workshops held at the 17th European Conference on Computer Vision, ECCV 2022. The conference took place in Tel Aviv, Israel, during October 23-27, 2022; the workshops were held hybrid or online. The 367 full papers included in this volume set were carefully reviewed and selected for inclusion in the ECCV 2022 workshop proceedings. They were organized in individual parts as follows: Part I: W01 - AI for Space; W02 - Vision for Art; W03 - Adversarial Robustness in the Real World; W04 - Autonomous Vehicle Vision Part II: W05 - Learning With Limited and Imperfect Data; W06 - Advances in Image Manipulation; Part III: W07 - Medical Computer Vision; W08 - Computer Vision for Metaverse; W09 - Self-Supervised Learning: What Is Next?; Part IV: W10 - Self-Supervised Learning for Next-Generation Industry-Level Autonomous Driving; W11 - ISIC Skin Image Analysis; W12 - Cross-Modal Human-Robot Interaction; W13 - Text in Everything; W14 - BioImage Computing; W15 - Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications; W16 - AI for Creative Video Editing and Understanding; W17 - Visual Inductive Priors for Data-Efficient Deep Learning; W18 - Mobile Intelligent Photography and Imaging; Part V: W19 - People Analysis: From Face, Body and Fashion to 3D Virtual Avatars; W20 - Safe Artificial Intelligence for Automated Driving; W21 - Real-World Surveillance: Applications and Challenges; W22 - Affective Behavior Analysis In-the-Wild; Part VI: W23 - Visual Perception for Navigation in Human Environments: The JackRabbot Human Body Pose Dataset and Benchmark; W24 - Distributed Smart Cameras; W25 - Causality in Vision; W26 - In-Vehicle Sensing and Monitorization; W27 - Assistive Computer Vision and Robotics; W28 - Computational Aspects of Deep Learning; Part VII: W29 - Computer Vision for Civil and Infrastructure Engineering; W30 - AI-Enabled Medical Image Analysis: Digital Pathology and Radiology/COVID19; W31 - Compositional and Multimodal Perception; Part VIII: W32 - Uncertainty Quantification for Computer Vision; W33 - Recovering 6D Object Pose; W34 - Drawings and Abstract Imagery: Representation and Analysis; W35 - Sign Language Understanding; W36 - A Challenge for Out-of-Distribution Generalization in Computer Vision; W37 - Vision With Biased or Scarce Data; W38 - Visual Object Tracking Challenge.

Book Pattern Recognition

    Book Details:
  • Author : Shutao Li
  • Publisher : Springer
  • Release : 2014-11-05
  • ISBN : 366245646X
  • Pages : 498 pages

Download or read book Pattern Recognition written by Shutao Li and published by Springer. This book was released on 2014-11-05 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set CCIS 483 and CCIS 484 constitutes the refereed proceedings of the 6th Chinese Conference on Pattern Recognition, CCPR 2014, held in Changsha, China, in November 2014. The 112 revised full papers presented in two volumes were carefully reviewed and selected from 225 submissions. The papers are organized in topical sections on fundamentals of pattern recognition; feature extraction and classification; computer vision; image processing and analysis; video processing and analysis; biometric and action recognition; biomedical image analysis; document and speech analysis; pattern recognition applications.

Book Learning Approaches in Signal Processing

Download or read book Learning Approaches in Signal Processing written by Francis Ring and published by CRC Press. This book was released on 2018-12-07 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coupled with machine learning, the use of signal processing techniques for big data analysis, Internet of things, smart cities, security, and bio-informatics applications has witnessed explosive growth. This has been made possible via fast algorithms on data, speech, image, and video processing with advanced GPU technology. This book presents an up-to-date tutorial and overview on learning technologies such as random forests, sparsity, and low-rank matrix estimation and cutting-edge visual/signal processing techniques, including face recognition, Kalman filtering, and multirate DSP. It discusses the applications that make use of deep learning, convolutional neural networks, random forests, etc. The applications include super-resolution imaging, fringe projection profilometry, human activities detection/capture, gesture recognition, spoken language processing, cooperative networks, bioinformatics, DNA, and healthcare.

Book Artificial Intelligence and PET Imaging  Part 1  An Issue of PET Clinics

Download or read book Artificial Intelligence and PET Imaging Part 1 An Issue of PET Clinics written by Babak Saboury and published by Elsevier Health Sciences. This book was released on 2021-09-21 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and PET Imaging, Part 1, An Issue of PET Clinics, E-Book

Book Deep Learning for the Earth Sciences

Download or read book Deep Learning for the Earth Sciences written by Gustau Camps-Valls and published by John Wiley & Sons. This book was released on 2021-08-16 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Book Computer  Intelligent Computing and Education Technology

Download or read book Computer Intelligent Computing and Education Technology written by Hsiang-Chuan Liu and published by CRC Press. This book was released on 2014-03-26 with total page 1488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings set contains selected Computer, Information and Education Technology related papers from the 2014 International Conference on Computer, Intelligent Computing and Education Technology (CICET 2014), held March 27-28, 2014 in Hong Kong. The proceedings aims to provide a platform for researchers, engineers and academics as well as industry professionals from all over the world to present their research results and development activities in Computer Science, Information Technology and Education Technology.

Book Histopathological Image Analysis in Medical Decision Making

Download or read book Histopathological Image Analysis in Medical Decision Making written by Dey, Nilanjan and published by IGI Global. This book was released on 2018-09-21 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical imaging technologies play a significant role in visualization and interpretation methods in medical diagnosis and practice using decision making, pattern classification, diagnosis, and learning. Progressions in the field of medical imaging lead to interdisciplinary discovery in microscopic image processing and computer-assisted diagnosis systems, and aids physicians in the diagnosis and early detection of diseases. Histopathological Image Analysis in Medical Decision Making provides emerging research exploring the theoretical and practical applications of image technologies and feature extraction procedures within the medical field. Featuring coverage on a broad range of topics such as image classification, digital image analysis, and prediction methods, this book is ideally designed for medical professionals, system engineers, medical students, researchers, and medical practitioners seeking current research on problem-oriented processing techniques in imaging technologies.

Book Dictionary Learning in Visual Computing

Download or read book Dictionary Learning in Visual Computing written by Qiang Zhang and published by Springer Nature. This book was released on 2022-05-31 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.

Book Geo Spatial Knowledge and Intelligence

Download or read book Geo Spatial Knowledge and Intelligence written by Hanning Yuan and published by Springer. This book was released on 2017-03-02 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume proceedings of CCIS 698 and 699 constitutes revised selected papers from the 4th International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2016, held in Hong Kong, China, in November 2016. The total of 118 papers presented in these proceedings were carefully reviewed and selected from 311 submissions. The contributions were organized in topical sections named: smart city in resource management and sustainable ecosystem; spatial data acquisition through RS and GIS in resource management and sustainable ecosystem; ecological and environmental data processing and management; advanced geospatial model and analysis for understanding ecological and environmental processes; applications of geo-informatics in resource management and sustainable ecosystem.

Book Tensor Computation for Data Analysis

Download or read book Tensor Computation for Data Analysis written by Yipeng Liu and published by Springer Nature. This book was released on 2021-08-31 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.

Book Diabetes and Fundus OCT

    Book Details:
  • Author : Ayman S. El-Baz
  • Publisher : Elsevier
  • Release : 2020-04-02
  • ISBN : 0128174412
  • Pages : 436 pages

Download or read book Diabetes and Fundus OCT written by Ayman S. El-Baz and published by Elsevier. This book was released on 2020-04-02 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diabetes and Fundus OCT brings together a stellar cast of authors who review the computer-aided diagnostic (CAD) systems developed to diagnose non-proliferative diabetic retinopathy in an automated fashion using Fundus and OCTA images. Academic researchers, bioengineers, new investigators and students interested in diabetes and retinopathy need an authoritative reference to bring this multidisciplinary field together to help reduce the amount of time spent on source-searching and instead focus on actual research and the clinical application. This reference depicts the current clinical understanding of diabetic retinopathy, along with the many scientific advances in understanding this condition. As the role of optical coherence tomography (OCT) in the assessment and management of diabetic retinopathy has become significant in understanding the vireo retinal relationships and the internal architecture of the retina, this information is more critical than ever. - Includes unique information for academic clinicians, researchers and bioengineers - Provides insights needed to understand the imaging modalities involved, the unmet clinical need that is being addressed, and the engineering and technical approaches applied - Brings together details on the retinal vasculature in diabetics as imaged by optical coherence tomography angiography and automated detection of retinal disease

Book Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Download or read book Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics written by Le Lu and published by Springer Nature. This book was released on 2019-09-19 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval. The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.

Book Intelligence Science and Big Data Engineering

Download or read book Intelligence Science and Big Data Engineering written by Yuxin Peng and published by Springer. This book was released on 2018-11-08 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 8th International Conference on Intelligence Science and Big DataEngineering, IScIDE 2018, held in Lanzhou, China, in August 2018.The 59 full papers presented in this book were carefully reviewed and selected from 121 submissions.They are grouped in topical sections on robots and intelligent systems; statistics and learning; deep learning; objects and language; classification and clustering; imaging; and biomedical signal processing.​