Download or read book Algebraic Analysis of Differential Equations written by T. Aoki and published by Springer Science & Business Media. This book was released on 2009-03-15 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 23 articles on algebraic analysis of differential equations and related topics, most of which were presented as papers at the conference "Algebraic Analysis of Differential Equations – from Microlocal Analysis to Exponential Asymptotics" at Kyoto University in 2005. This volume is dedicated to Professor Takahiro Kawai, who is one of the creators of microlocal analysis and who introduced the technique of microlocal analysis into exponential asymptotics.
Download or read book Differential Algebraic Equations A Projector Based Analysis written by René Lamour and published by Springer Science & Business Media. This book was released on 2013-01-19 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to constraints, in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering, system biology. DAEs and their more abstract versions in infinite-dimensional spaces comprise a great potential for future mathematical modeling of complex coupled processes. The purpose of the book is to expose the impressive complexity of general DAEs from an analytical point of view, to describe the state of the art as well as open problems and so to motivate further research to this versatile, extra-ordinary topic from a broader mathematical perspective. The book elaborates a new general structural analysis capturing linear and nonlinear DAEs in a hierarchical way. The DAE structure is exposed by means of special projector functions. Numerical integration issues and computational aspects are treated also in this context.
Download or read book Differential algebraic Equations written by Peter Kunkel and published by European Mathematical Society. This book was released on 2006 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.
Download or read book B Series written by John C. Butcher and published by Springer Nature. This book was released on 2021-04-01 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: B-series, also known as Butcher series, are an algebraic tool for analysing solutions to ordinary differential equations, including approximate solutions. Through the formulation and manipulation of these series, properties of numerical methods can be assessed. Runge–Kutta methods, in particular, depend on B-series for a clean and elegant approach to the derivation of high order and efficient methods. However, the utility of B-series goes much further and opens a path to the design and construction of highly accurate and efficient multivalue methods. This book offers a self-contained introduction to B-series by a pioneer of the subject. After a preliminary chapter providing background on differential equations and numerical methods, a broad exposition of graphs and trees is presented. This is essential preparation for the third chapter, in which the main ideas of B-series are introduced and developed. In chapter four, algebraic aspects are further analysed in the context of integration methods, a generalization of Runge–Kutta methods to infinite index sets. Chapter five, on explicit and implicit Runge–Kutta methods, contrasts the B-series and classical approaches. Chapter six, on multivalue methods, gives a traditional review of linear multistep methods and expands this to general linear methods, for which the B-series approach is both natural and essential. The final chapter introduces some aspects of geometric integration, from a B-series point of view. Placing B-series at the centre of its most important applications makes this book an invaluable resource for scientists, engineers and mathematicians who depend on computational modelling, not to mention computational scientists who carry out research on numerical methods in differential equations. In addition to exercises with solutions and study notes, a number of open-ended projects are suggested. This combination makes the book ideal as a textbook for specialised courses on numerical methods for differential equations, as well as suitable for self-study.
Download or read book Symmetry Analysis of Differential Equations with Mathematica written by Gerd Baumann and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.
Download or read book Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations written by Uri M. Ascher and published by SIAM. This book was released on 1998-08-01 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains all the material necessary for a course on the numerical solution of differential equations.
Download or read book Numerical Solution of Initial value Problems in Differential algebraic Equations written by K. E. Brenan and published by SIAM. This book was released on 1996-01-01 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.
Download or read book Applications of Differential Algebraic Equations Examples and Benchmarks written by Stephen Campbell and published by Springer. This book was released on 2019-06-08 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume encompasses prototypical, innovative and emerging examples and benchmarks of Differential-Algebraic Equations (DAEs) and their applications, such as electrical networks, chemical reactors, multibody systems, and multiphysics models, to name but a few. Each article begins with an exposition of modelling, explaining whether the model is prototypical and for which applications it is used. This is followed by a mathematical analysis, and if appropriate, a discussion of the numerical aspects including simulation. Additionally, benchmark examples are included throughout the text. Mathematicians, engineers, and other scientists, working in both academia and industry either on differential-algebraic equations and systems or on problems where the tools and insight provided by differential-algebraic equations could be useful, would find this book resourceful.
Download or read book Surveys in Differential Algebraic Equations III written by Achim Ilchmann and published by Springer. This book was released on 2015-10-29 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Download or read book The Numerical Solution of Differential Algebraic Systems by Runge Kutta Methods written by Ernst Hairer and published by Springer. This book was released on 2006-11-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
Download or read book Progress in Differential Algebraic Equations II written by Timo Reis and published by Springer Nature. This book was released on 2020-10-10 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.
Download or read book Ordinary Differential Equations and Linear Algebra written by Todd Kapitula and published by SIAM. This book was released on 2015-11-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.
Download or read book Foundations of Algebraic Analysis PMS 37 Volume 37 written by Masaki Kashiwara and published by Princeton University Press. This book was released on 2017-03-14 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of algebraic methods for studying analysts is an important theme in modern mathematics. The most significant development in this field is microlocal analysis, that is, the local study of differential equations on cotangent bundles. This treatise provides a thorough description of microlocal analysis starting from its foundations. The book begins with the definition of a hyperfunction. It then carefully develops the microfunction theory and its applications to differential equations and theoretical physics. It also provides a description of microdifferential equations, the microlocalization of linear differential equations. Finally, the authors present the structure theorems for systems of microdifferential equations, where the quantized contact transformations are used as a fundamental device. The microfunction theory, together with the quantized contact transformation theory, constitutes a valuable new viewpoint in linear partial differential equations. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Download or read book Analysis of Dirac Systems and Computational Algebra written by Fabrizio Colombo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: * The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
Download or read book Algebraic Analysis of Singular Perturbation Theory written by Takahiro Kawai and published by American Mathematical Soc.. This book was released on 2005 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.
Download or read book Solving Ordinary Differential Equations II written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.
Download or read book Asymptotic Differential Algebra and Model Theory of Transseries written by Matthias Aschenbrenner and published by Princeton University Press. This book was released on 2017-06-06 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.