EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Al based Energetic Nano Materials

Download or read book Al based Energetic Nano Materials written by Carole Rossi and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two decades, the rapid development of nanochemistry and nanotechnology has allowed the synthesis of various materials and oxides in the form of nanopowders making it possible to produce new energetic compositions and nanomaterials. This book has a bottom-up structure, from nanomaterials synthesis to the application fields. Starting from aluminum nanoparticles synthesis for fuel application, it proposes a detailed state-of-the art of the different methods of preparation of aluminum-based reactive nanomaterials. It describes the techniques developed for their characterization and, when available, a description of the fundamental mechanisms responsible for their ignition and combustion. This book also presents the possibilities and limitations of different energetic nanomaterials and related structures as well as the analysis of their chemical and thermal properties. The whole is rounded off with a look at the performances of reactive materials in terms of heat of reaction and reactivity mainly characterized as the self-sustained combustion velocity. The book ends up with a description of current reactive nanomaterials applications underlying the promising integration of aluminum-based reactive nanomaterial into micro electromechanical systems.

Book Nanoenergetic Materials

Download or read book Nanoenergetic Materials written by Djalal Trache and published by MDPI. This book was released on 2021-03-25 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly informative and carefully presented book discusses the preparation, processing, characterization and applications of different types of nanoenergetic materials, as well as the tailoring of their properties. It gives an overview of recent advances of outstanding classes of energetic materials applied in the fields of physics, chemistry, aerospace, defense, and materials science, among others. The content of this book is relevant to researchers in academia and industry professionals working on the development of advanced nanoenergetic materials and their applications.

Book Nano and Micro Scale Energetic Materials

Download or read book Nano and Micro Scale Energetic Materials written by Weiqiang Pang and published by John Wiley & Sons. This book was released on 2023-01-26 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an up-to-date account of innovative energetic materials and their potential applications in space propulsion and high explosives Most explosives and propellants currently use a small number of ingredients, such as TNT and nitrocellulose. In comparison to conventional materials, nano- and micro-scale energetic materials exhibit superior burning characteristics and much higher energy densities and explosive yields. Nano and Micro-scale Energetic Materials: Propellants and Explosives provides a timely overview of innovative nano-scale energetic materials (nEMs) and microscale energetic materials (μEMs) technology. Covering nEMs and μEMs ingredients as well as formulations, this comprehensive volume examines the preparation, characterization, ignition, combustion, and performance of energetic materials in various applications of propellants and explosives. Twenty-two chapters explore metal-based pyrotechnic nanocomposites, solid and hybrid rocket propulsion, solid fuels for in-space and power, the sensitivity and mechanical properties of explosives, new energetic materials, and more. Explores novel energetic materials and their potential for use in propellants and explosives Summarizes the most recent advances of leading research groups currently active in twelve countries Discusses how new environmentally friendly, high-combustion energetic materials can best be used in different applications Explains the fundamentals of energetic materials, including similarities and differences between composite propellants and explosives Nano and Micro-scale Energetic Materials: Propellants and Explosives is an important resource for materials scientists, explosives specialists, pyrotechnicians, environmental chemists, polymer chemists, physical chemists, aerospace physicians, and aerospace engineers working in both academia and industry.

Book Nano Energetic Materials

Download or read book Nano Energetic Materials written by Shantanu Bhattacharya and published by Springer. This book was released on 2018-11-09 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.

Book Energetic Nanomaterials

    Book Details:
  • Author : Vladimir E Zarko
  • Publisher : Elsevier
  • Release : 2016-01-21
  • ISBN : 0128027150
  • Pages : 394 pages

Download or read book Energetic Nanomaterials written by Vladimir E Zarko and published by Elsevier. This book was released on 2016-01-21 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energetic Nanomaterials: Synthesis, Characterization, and Application provides researchers in academia and industry the most novel and meaningful knowledge on nanoenergetic materials, covering the fundamental chemical aspects from synthesis to application. This valuable resource fills the current gap in book publications on nanoenergetics, the energetic nanomaterials that are applied in explosives, gun and rocket propellants, and pyrotechnic devices, which are expected to yield improved properties, such as a lower vulnerability towards shock initiation, enhanced blast, and environmentally friendly replacements of currently used materials. The current lack of a systematic and easily available book in this field has resulted in an underestimation of the input of nanoenergetic materials to modern technologies. This book is an indispensable resource for researchers in academia, industry, and research institutes dealing with the production and characterization of energetic materials all over the world. Written by high-level experts in the field of nanoenergetics Covers the hot topic of energetic nanomaterials, including nanometals and their applications in nanoexplosives Fills a gap in energetic nanomaterials book publications

Book Nanothermites

Download or read book Nanothermites written by Eric Lafontaine and published by John Wiley & Sons. This book was released on 2016-07-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent introduction of the “nano” dimension to pyrotechnics has made it possible to develop a new family of highly reactive substances: nanothermites. These have a chemical composition that is comparable to that of thermites at submillimeter or micrometric granulometry, but with a morphology having a much increased degree of homogeneity. This book discusses the methods of preparation of these energetic nanomaterials, their specific properties, and the different safety aspects inherent in their manipulation.

Book Nanoengineering and Synthesis of Metal Based Materials for Enhanced Energetic Performance

Download or read book Nanoengineering and Synthesis of Metal Based Materials for Enhanced Energetic Performance written by Prawal Agarwal and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-based energetic materials are a pathway for clean and sustainable energy applications because of their high energy densities and ability to oxidize readily and release large amounts of heat. They are sustainable sources of green combustion and can easily be stored and transported because they are chemically stable solids compared to hydrocarbon fuels. These merits lead to their applications in volume-limited propulsion, solid fuels, explosives, space exploration, self-destructing energetic chips, electrochemical energy storage, and hydrogen generation/storage. To be used effectively in these applications, nanometer-sized particles are beneficial because of the fast ignition, more complete combustion, and enhanced heat transfer and reaction rates due to the larger specific surface area available for the reaction. However, some roadblocks exist in harnessing the benefits of metal nanoparticles (NPs). The surfaces of the metal NPs are highly reactive. Hence, there is a formation of a native oxide layer on their surface. This native oxide occupies a significant fraction of mass in the sample that does not contribute to the oxidative heat release of the sample and also acts as a diffusion barrier on the metal NP surface that delays the contact of oxidizer with metal in the core and thus restricts the combustion process. Various methods are available in the literature to minimize the inhibiting effects of the native oxide layer on oxidative heat release. These methods are based on surface functionalization using solution-based approaches, reactive milling, coating reactive metals on other metals, and high-temperature sintering to synthesize metal borides. These methods helped us to determine how to approach solving the problem of the native oxide layer and investigating possible routes to improve the oxidative energy release from metal-based nanomaterials. We can either reduce native oxide or convert them into a reactive component such that they contribute to the oxidative heat release. In our work, we used nonthermal plasma processing and intermetallic chemistry based on self-propagating high-temperature synthesis (SHS) reactions. Nonthermal plasma is a low-temperature operation that triggers selective and rapid reactions on the surface. Due to low-temperature operation, this process uses energy efficiently. We used hydrogen plasma to generate reactive hydrogen species that can reduce native oxides of metal at room temperature. We also used plasma-enhanced chemical vapor deposition (PECVD) through argon plasma to deposit reactive nanofilms on the metal NPs surfaces to enhance the energy performance during oxidation and to passivate their surfaces to inhibit oxide growth in extreme temperature and humid conditions during storage. Using SHS, we synthesize solid solutions of metals with long storage life because of their thermal stability and with enhanced oxidative heat release due to the reduction of less reactive metal oxide with a more reactive metal. The process temperature is selected so that there is no sintering and agglomeration of NPs during the process. Both the above processes are dry-phase process and reduces the contamination of metals. Using nonthermal plasma processing, we enhanced the oxidative heat release from boron (B) NPs by developing an in-situ process in which hydrogen plasma reduces B oxide and PECVD coats the surface with a thin fluorocarbon film to stop reoxidation when NPs are exposed to the environment. PECVD is used to deposit reactive nanofilms of perfluorodecalin and oleic acid on the surface of aluminum (Al) NPs, which lead to superior energy performance of Al NPs. The plasma-based oleic acid nanofilms performed better than graphene oxide. Hydrogen plasma doped the Al NPs with hydrides such that during oxidation, channels are formed on the surface due to gas transport, leading to better oxidation of metal in the core. Boron is a desirable candidate for energetic applications with the highest gravimetric and volumetric energy density of 58 kJ/g and 140 kJ/mL. The energy from B can be exploited by the addition of reactive metals with reasonable gravimetric energy density, such as Al and magnesium (Mg), in the form of a mechanical mixture or solid solutions, which can undergo an exothermic redox reaction to reduce native oxide and enrich metallic B. We used SHS and mechanical mixing to form Mg/B solid solutions and energy-optimized Al/B systems to synthesize energetic materials. We also combined plasma chemistry and intermetallic chemistry to investigate the integrated effects of these processes on B energetics. Hence, we reduced native oxides and/or converted them into energetic components via nanoengineering by fabricating core-shell architectures and synthesizing energetic nanomaterials with enhanced energy performance and extended storage stability.

Book Nanomaterials For Energy Conversion And Storage

Download or read book Nanomaterials For Energy Conversion And Storage written by Dunwei Wang and published by World Scientific. This book was released on 2017-11-10 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.

Book Nanomaterials for Healthcare  Energy and Environment

Download or read book Nanomaterials for Healthcare Energy and Environment written by Aamir Hussain Bhat and published by Springer. This book was released on 2019-08-16 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the various types of nanomaterials currently available and their applications in three major sectors: energy, health, and the environment. It addresses a range of aspects based on the fact that these materials’ structure can be tailored at extremely small scales to achieve specific properties, thus greatly expanding the materials science toolkit. Further, the book pursues a holistic approach to nanomaterial applications by taking into consideration the various stakeholders who use them. It explores several applications that could potentially be used to improve the environment and to more efficiently and cost-effectively produce energy, e.g. by reducing pollutant production during the manufacture of materials, producing solar cells that generate electricity at a competitive cost, cleaning up organic chemicals that pollute groundwater, removing volatile organic compounds (VOCs) from the air, and so on. Given its scope, the book offers a valuable asset for a broad readership, including professionals, students, and researchers from materials science/engineering, polymer science, composite technology, nanotechnology, and biotechnology whose work involves nanomaterials and nanocomposites.

Book Synthesis and Optical Ignition of Aluminum and Silicon based Energetic Materials

Download or read book Synthesis and Optical Ignition of Aluminum and Silicon based Energetic Materials written by Yuma Ohkura and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Energetic materials, aluminum (Al) and silicon (Si), due to their large volumetric energy densities, earth abundance, and low cost, have broad applications in propulsion, thermal batteries, waste disposal and power generation for microsystems. The energetic materials are commonly prepared by mixing fuel and oxidizer powders, however, the energy release rates are slow and difficult to ignite. Furthermore, the large portion of the reactants remains unburned due to the formation of the oxide layer during the reaction. Optimized energetic materials would have the reactive components mixed on a scale as fine as possible to reduce the mass transport distance and facilitate the ignition. This leads to the idea of reducing the sizes of energetic materials down to nanoscale to increase the surface area and contact area between the fuel and oxidizer. In this study, we investigated two new areas: 1) the effects of the nanostructured morphology on the exothermic reaction of Al and CuO, 2) demonstrate and understand the flash ignition of Al nanoparticles (NPs), and extending the flash ignition to Al microparticles (MPs) and porous Si. First, it remains a challenge to create energetic materials, a mixture of Al and metal oxides, with nanoscale uniformity. Here, we report synthesis and ignition studies on thermites (mixtures of Al and metal oxides) with unique nanostructures, i.e., CuO/Al core/shell nanowires (NWs) and Al/CuO core/shell micro and nano particles. The CuO NW cores were synthesized by the thermal annealing of copper films and served as templates for the deposition of Al shells by subsequent sputtering. Similarly, for core/shell particles, the Al particles were coated with a very thin CuO shell using a solution phase method. The advantage of such core/shell structures are that CuO and Al are uniformly mixed at the nanoscale with no aggregation. The onset temperatures of the exothermic reaction of the core/shell NWs were similar to those of nanoparticle NP-based thermites in terms of magnitude, and insensitivity to equivalence ratios. Moreover, the core/shell NW thermites, compared to NP-based thermites, exhibit greatly improved mixing uniformity and reduced activation energy for the thermite reaction. For Al/CuO core/shell particles, in comparison to mixtures of Al particles and CuO NPs, have better chemical homogeneity and physical contact between Al and CuO, so that the core/shell particles exhibit much larger burning rates. The core/shell structure is a general and effective structure to tailor the combustion performance of energetic materials. Second, nonintrusive optical flash ignition is attractive for many applications due to its simplicity, and flexibility in controlling the area exposed to the flash. However, the oxidation mechanism of Al NPs at large heating rates remains inconclusive due to the lack of direct experimental evidence. We studied the oxidation mechanism of Al NPs under large heating rate (on the order of 106 K/s or higher) by a simple flash ignition method, which uses a xenon flash to ignite Al NPs. The flash ignition occurs when the Al NPs have suitable diameters and sufficient packing density to increase the temperature above their ignition temperatures. We then extended the flash ignition to Al MPs. Flash ignition of Al MPs is challenging due to their higher minimum flash ignition energy, which originates from weaker light absorption and higher ignition temperature compared to Al NPs. By the addition of WO3 NPs to Al MPs, the minimum flash ignition energy of Al MPs was reduced and we studied the roles of WO3 NPs upon flash ignition. Finally, we demonstrate that freestanding porous Si films can also be optically ignited in ambient air by a xenon flash. Our complementary experimental and numerical studies reveal that the minimum flash ignition energy increases with increasing the thickness due to heat loss through the porous Si layer. The minimum flash ignition energy is lower for higher porosity Si film since higher porosity reduces the heat capacity and thermal conductivity, facilitating the temperature rise. We believe that these results will be of great importance to reliably ignite energetic materials and to prevent unwanted combustion for practical energetic applications.

Book Handbook of Polymer and Ceramic Nanotechnology

Download or read book Handbook of Polymer and Ceramic Nanotechnology written by Chaudhery Mustansar Hussain and published by Springer. This book was released on 2021-09-13 with total page 1667 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook examines the recent advances in the nanotechnology of polymers and ceramics, which possess outstanding mechanical properties and compatibility given their unique physical and chemical properties caused by the unusually large surface area to volume ratios and high interfacial reactivity. This handbook highlights the various compositions and morphologies of polymer and ceramic nanomaterials that can serve as powerful tools for the diverse applications in areas such as electronics, photonics, shape-memory alloys, biomaterials and biomedical nanomaterials, graphene-based technologies, and textiles and packaging. The handbook addresses safety, economics, green production and sustainability. The book contains a section on functionalization of these molecules, which only increases the possibility of developing even more versatile materials that can be fine-tuned for specific applications. Filling a gap in the literature, this handbook provides comprehensive coverage of properties, fabrication, characterization, functionalization methods and applications at both experimental and theoretical models scales. Economic, toxicological, regulatory, and environmental concerns regarding applications are also discussed in detail. Special attention is paid to sustainable approaches that reduce costs in terms of chemicals and time consumption. The book covers research trends, challenges, and prospective topics as well.

Book Oxide Free Nanomaterials for Energy Storage and Conversion Applications

Download or read book Oxide Free Nanomaterials for Energy Storage and Conversion Applications written by Prabhakarn Arunachalam and published by Elsevier. This book was released on 2021-12-01 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide Free Nanomaterials for Energy Storage and Conversion Applications covers in depth topics on non-oxide nanomaterials involving transition metal nitrides, carbides, selenides, phosphides, oxynitrides based electrodes, & other non-oxide groups. The current application of nanostructured nonoxides involves their major usage in energy storage and conversion devices variety of applications such as supercapacitor, batteries, dye-sensitized solar cells and hydrogen production applications. The current application of energy storage devices involves their usage of nanostructured non-oxide materials with improved energy and power densities. In this book readers will discover the major advancements in this field during the past decades. The various techniques used to prepare environmentally friendly nanostructured non-oxide materials, their structural and morphological characterization, their improved mechanical and material properties, and finally, current applications and future impacts of these materials are discussed. While planning and fabricating non-oxide materials, the readers must be concern over that they ought to be abundant, cost-efficient and environment-friendly for clean innovation and conceivably be of use in an expansive choice of utilization. The book gives detailed literature on the development of nanostructured non-oxides, their use as energy related devices and their present trend in the industry and market. This book also emphasis on the latest advancement about application of these noble non-oxide based materials for photocatalytic water-splitting. Recent progress on various kinds of both photocatalytic and electrocatalytic nanomaterials is reviewed, and essential aspects which govern catalytic behaviours and the corresponding stability are discussed. The book will give an updated literature on the synthesis, potential applications and future of nanostructured non-oxides in energy related applications. This book is highly useful to researchers working in the field with diversified backgrounds are expected to making the chapter truly interdisciplinary in nature. The contents in the book will emphasize the recent advances in interdisciplinary research on processing, morphology, structure and properties of nanostructured non-materials and their applications in energy applications such as supercapacitors, batteries, solar cells, electrochemical water splitting and other energy applications. Thus, nanotechnology researchers, scientists and experts need to have update of the growing trends and applications in the field of science and technology. Further, the postgraduate students, scientists, researchers and technologists are need to buy this book. Offers a comprehensive coverage of the nanostructured non-oxide materials and their potential energy applications Examines the properties of nanostructured non-oxide materials that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be used for industrial applications Shows the how nanostructured non-oxide materials are used in a wide range of industry sectors, containing energy production and storage

Book Advanced Nanomaterials and Their Applications in Renewable Energy

Download or read book Advanced Nanomaterials and Their Applications in Renewable Energy written by Tian-Hao Yan and published by Elsevier. This book was released on 2022-07-30 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Nanomaterials and Their Applications in Renewable Energy, Second Edition presents timely topics related to nanomaterials' feasible synthesis and characterization and their application in the energy fields. The book examines the broader aspects of energy use, including environmental effects of disposal of Li-ion and Na batteries and reviews the main energy sources of today and tomorrow, from fossil fuels to biomass, hydropower, storage power and solar energy. The monograph treats energy carriers globally in terms of energy storage, transmission, and distribution, addresses fuel cell-based solutions in transportation, industrial, and residential building, considers synergistic systems, and more. This new edition also offers updated statistical data and references; a new chapter on the synchronous x-ray based analysis techniques and electron tomography, and if waste disposal of energy materials pose a risk to the microorganism in water, and land use; expanding coverage of renewable energy from the first edition; with newer color illustrations. Provides a comprehensive review of solar energy, fuel cells and gas storage from 2010 to the present Reviews feasible synthesis and modern analytical techniques used in alternative energy Explores examples of research in alternative energy, including current assessments of nanomaterials and safety Contains a glossary of terms, units and historical benchmarks Presents a useful guide that will bring readers up-to-speed on historical developments in alternative fuel cells

Book Functional Nanomaterials

    Book Details:
  • Author : Wai-Yeung Wong
  • Publisher : John Wiley & Sons
  • Release : 2022-06-07
  • ISBN : 3527347976
  • Pages : 564 pages

Download or read book Functional Nanomaterials written by Wai-Yeung Wong and published by John Wiley & Sons. This book was released on 2022-06-07 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Nanomaterials Presents the most recent advances in the production and applications of various functional nanomaterials As new synthetic methods, characterization technologies, and nanomaterials (NMs) with novel physical and chemical properties are developed, researchers and scientists across disciplines need to keep pace with advancements in the dynamic field. Functional Nanomaterials: Synthesis, Properties, and Applications provides comprehensive coverage of fundamental concepts, synthetic methods, characterization technologies, device fabrication, performance evaluation, and both current and emerging applications. Contributions from leading scientists in academia and industry present research developments of novel functional nanomaterials including metal nanoparticles, two-dimensional nanomaterials, perovskite-based nanomaterials, and polymer-based nanomaterials and nanocomposites. Topics include metal-based nanomaterials for electrochemical water splitting, cerium-based nanostructure materials for electrocatalysis, applications of rare earth luminescent nanomaterials, metal complex nanosheets, and methods for synthesizing polymer nanocomposites. Provides readers with timely and accurate information on the development of functional nanomaterials in nanoscience and nanotechnology Presents a critical perspective of the design strategy, synthesis, and characterization of advanced functional nanomaterials Focuses on recent research developments in emerging areas with emphasis on fundamental concepts and applications Explores functional nanomaterials for applications in areas such as electrocatalysis, bioengineering, optoelectronics, and electrochemistry Covers a diverse range of nanomaterials, including carbonaceous nanomaterials, metal-based nanomaterials, transition metal dichalcogenides-based nanomaterials, semiconducting molecules, and magnetic nanoparticles Functional Nanomaterials is an invaluable resource for chemists, materials scientists, electronics engineers, bioengineers, and others in the scientific community working with nanomaterials in the fields of energy, electronics, and biomedicine.

Book Nanomaterials for Sustainable Energy and Environmental Remediation

Download or read book Nanomaterials for Sustainable Energy and Environmental Remediation written by Mu. Naushad and published by Elsevier. This book was released on 2020-03-14 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science Summarizes the latest advances in how nanotechnology is being used in energy and environmental science Outlines the major challenges to using nanomaterials for creating new products and devices in the sustainable energy and environmental sectors Helps materials scientists and engineers make selection and design decisions regarding which nanomaterial to use when creating new produts and evices for energy and environmental applications

Book Emerging Nanostructured Materials for Energy and Environmental Science

Download or read book Emerging Nanostructured Materials for Energy and Environmental Science written by Saravanan Rajendran and published by Springer. This book was released on 2019-02-07 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.

Book Nanomaterials for Solar Cell Applications

Download or read book Nanomaterials for Solar Cell Applications written by Sabu Thomas and published by Elsevier. This book was released on 2019-06-12 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy. Provides a well-organized approach to the use of nanomaterials for solar cell applications Discusses the synthesis, characterization and applications of traditional and new material Includes coverage of emerging nanomaterials, such as graphene, graphene-derivatives and perovskites