EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aerodynamics and Heat Transfer of Turbine Blading

Download or read book Aerodynamics and Heat Transfer of Turbine Blading written by F. G. Horton and published by . This book was released on 1985 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aerodynamics of Wind Turbines

Download or read book Aerodynamics of Wind Turbines written by R.S. Amano and published by WIT Press. This book was released on 2014-11-24 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Dynamics-Based Health Monitoring and Control of Wind Turbine Rotors, Experimental Testing of Wind Turbines Using Wind Tunnels with an Emphasis on Small-Scale Wind Turbines Under Low-Reynolds Numbers, Computational Methods, Ice Accretion for Wind Turbines and Influence of Some Parameters, and Special Structural Reinforcement Technique for Wind Turbine Blades. Consequently, for these reasons, analysis of wind turbines will attract readers not only from the wind energy community but also in the gas turbines heat transfer and fluid mechanics community.

Book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Procedure for Calculating Turbine Blade Temperatures and Comparison of Calculated with Observed Values for Two Stationary Air cooled Blades

Download or read book Procedure for Calculating Turbine Blade Temperatures and Comparison of Calculated with Observed Values for Two Stationary Air cooled Blades written by W. Byron Brown and published by . This book was released on 1952 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Local and average blade temperatures were calculated for two stationary air-cooled turbine blades with 10 tubes and 13 fins forming the internal heat-transfer surfaces. These temperatures were calculated using previously published NACA temperature-distribution equations and the most recent theories for determining heat-transfer coefficients, including for the first time the allowance for effects of variable wall temperature on gas-to-blade heat-transfer coefficients at the leading and trailing sections of turbine blades. Comparison of calculated and experimental blade temperatures, for gas temperatures of 300° and 1000°F, resulted in good agreement.

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book Advanced Multistage Turbine Blade Aerodynamics  Performance  Cooling  and Heat Transfer

Download or read book Advanced Multistage Turbine Blade Aerodynamics Performance Cooling and Heat Transfer written by and published by . This book was released on 1995 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.

Book Axial Turbine Aerodynamics for Aero engines

Download or read book Axial Turbine Aerodynamics for Aero engines written by Zhengping Zou and published by Springer. This book was released on 2018-01-11 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a monograph on aerodynamics of aero-engine gas turbines focusing on the new progresses on flow mechanism and design methods in the recent 20 years. Starting with basic principles in aerodynamics and thermodynamics, this book systematically expounds the recent research on mechanisms of flows in axial gas turbines, including high pressure and low pressure turbines, inter-turbine ducts and turbine rear frame ducts, and introduces the classical and innovative numerical evaluation methods in different dimensions. This book also summarizes the latest research achievements in the field of gas turbine aerodynamic design and flow control, and the multidisciplinary conjugate problems involved with gas turbines. This book should be helpful for scientific and technical staffs, college teachers, graduate students, and senior college students, who are involved in research and design of gas turbines.

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Temperatures and Stresses on Hollow Blades for Gas Turbines

Download or read book Temperatures and Stresses on Hollow Blades for Gas Turbines written by Erich Pollman and published by . This book was released on 1947 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GMbH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900 degrees and circumferential velocities of 600 meters per second are discussed. The assumptions onthe heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The temperature distribution in the cross section of a blade Is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distribution is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for 550 C gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into account.

Book Aerodynamics and Heat Transfer for a Modern Stage and One half Turbine

Download or read book Aerodynamics and Heat Transfer for a Modern Stage and One half Turbine written by Matthew Lee Krumanaker and published by . This book was released on 2003 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Chord Size on Weight and Cooling Characteristics of Air cooled Turbine Blades

Download or read book Effect of Chord Size on Weight and Cooling Characteristics of Air cooled Turbine Blades written by Jack B. Esgar and published by . This book was released on 1957 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: An analysis has been made to determine the effect of chord size on the weight and cooling characteristics of shell-supported, air-cooled gas-turbine blades. In uncooled turbines with solid blades, the general practice has been to design turbines with high aspect ratio (small blade chord) to achieve substantial turbine weight reduction. With air-cooled blades, this study shows that turbine blade weight is affected to a much smaller degree by the size of the blade chord.

Book Constrained Aerodynamic and Heat Transfer Optimization of Gas Turbine Blades Using an Adjoint Approach

Download or read book Constrained Aerodynamic and Heat Transfer Optimization of Gas Turbine Blades Using an Adjoint Approach written by Seyyed Arash Mousavi and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This research work presents an adjoint approach to optimize the aero-thermalproperties of gas turbine blades. The flow solver is a Reynolds-Averaged Navier-Stokes code applicable to structured grids. The flow governing equations are discretizedusing a second-order finite-volume scheme and for artificial dissipation, theJameson-Schmidt-Turkel (JST) scheme is applied in order to accurately capture theflow discontinuities. The code uses a five-stage modified Runge-Kutta explicit temporaldiscretisation and utilizes the multigrid method, residual smoothing and thelocal time stepping for convergence acceleration.A loosely coupled conjugate heat transfer (CHT) method is applied to considerthe effect of the internal convective cooling and obtain the fluid-solid interface temperatureat the blade surface. A finite-element solver is developed to solve the energyequation in the solid domain and the governing equation is solved by implementingthe weak-Galerkin finite-element discretization scheme where an unstructured lineartriangular mesh is adopted for the solution domain. The temperature at the solid andfluid interface is computed through an iterative exchange of the boundary conditionsacross the interface using the Flux Forward Temperature Back (FFTB) method. Forexternally cooled blades, a source term injection model is implemented to model theeffect of external cooling on the blade surface heat transfer.The optimization procedure is gradient-based and the blade shape optimizationis accomplished through SNOPT, a sequential-quadratic programming package thatis capable of automatically handling the linear and/or non-linear flow and geometric constraints. To efficiently calculate the gradients, a continuous adjoint method isemployed and in order to be consistent with the flow boundary condition, a characteristicbased approach is utilized in developing the adjoint boundary conditions.The flow solver is validated for several benchmark turbomachinery cascades.The optimization procedure is applied to several inviscid and viscous turbine andcompressor blades to enhance the aerodynamic and/or thermal performance. Thedeveloped optimization algorithm is demonstrated to be efficient in terms of computationaltime and accuracy for the optimization of two-dimensional turbomachinerycases where it provides promising results in reducing the desired objective functionswhile respecting the imposed flow and geometric constraints." --

Book Experimental Investigation of the Heat transfer Characteristics of an Air cooled Sintered Porous Turbine Blade

Download or read book Experimental Investigation of the Heat transfer Characteristics of an Air cooled Sintered Porous Turbine Blade written by Louis J. Schafer (Jr.) and published by . This book was released on 1952 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade

Download or read book Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade written by and published by . This book was released on 2000 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 129 deg of nominal turning and an axial chord of 137 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the design point of 628,000, -20%, +20%, and +40%. Three ideal exit pressure ratios were examined including the design point of 1.378, -10%, and +10%. Inlet incidence angles of 0 deg and +/-2 deg were also examined. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.