EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advanced Techniques in Knowledge Discovery and Data Mining

Download or read book Advanced Techniques in Knowledge Discovery and Data Mining written by Nikhil Pal and published by Springer. This book was released on 2005-07-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.

Book Advanced Data Mining Techniques

Download or read book Advanced Data Mining Techniques written by David L. Olson and published by Springer Science & Business Media. This book was released on 2008-01-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.

Book Feature Selection for Knowledge Discovery and Data Mining

Download or read book Feature Selection for Knowledge Discovery and Data Mining written by Huan Liu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Book Advanced Data Mining Technologies in Bioinformatics

Download or read book Advanced Data Mining Technologies in Bioinformatics written by Hui-Huang Hsu and published by IGI Global. This book was released on 2006-01-01 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.

Book Information Visualization in Data Mining and Knowledge Discovery

Download or read book Information Visualization in Data Mining and Knowledge Discovery written by Usama M. Fayyad and published by Morgan Kaufmann. This book was released on 2002 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.

Book Data Mining for Intelligence  Fraud   Criminal Detection

Download or read book Data Mining for Intelligence Fraud Criminal Detection written by Christopher Westphal and published by CRC Press. This book was released on 2008-12-22 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2004, the Government Accountability Office provided a report detailing approximately 200 government-based data-mining projects. While there is comfort in knowing that there are many effective systems, that comfort isn‘t worth much unless we can determine that these systems are being effectively and responsibly employed.Written by one of the most

Book Advances in Knowledge Discovery and Data Mining

Download or read book Advances in Knowledge Discovery and Data Mining written by Usama M. Fayyad and published by . This book was released on 1996 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Book Optimization Based Data Mining  Theory and Applications

Download or read book Optimization Based Data Mining Theory and Applications written by Yong Shi and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.

Book Intelligent Information and Database Systems

Download or read book Intelligent Information and Database Systems written by Manh Thanh Le and published by Springer Science & Business Media. This book was released on 2010-03-05 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2010 Asian Conference on Intelligent Information and Database Systems (ACIIDS) was the second event of the series of international scientific conferences for research and applications in the field of intelligent information and database systems. The aim of ACIIDS 2010 was to provide an international forum for scientific research in the technologies and applications of intelligent information, database systems and their applications. ACIIDS 2010 was co-organized by Hue University (Vietnam) and Wroclaw University of Technology (Poland) and took place in Hue city (Vietnam) during March 24–26, 2010. We received almost 330 papers from 35 countries. Each paper was peer reviewed by at least two members of the International Program Committee and International Reviewer Board. Only 96 best papers were selected for oral presentation and publi- tion in the two volumes of the ACIIDS 2010 proceedings. The papers included in the proceedings cover the following topics: artificial social systems, case studies and reports on deployments, collaborative learning, collaborative systems and applications, data warehousing and data mining, database management technologies, database models and query languages, database security and integrity,- business, e-commerce, e-finance, e-learning systems, information modeling and - quirements engineering, information retrieval systems, intelligent agents and mul- agent systems, intelligent information systems, intelligent internet systems, intelligent optimization techniques, object-relational DBMS, ontologies and information sharing, semi-structured and XML database systems, unified modeling language and unified processes, Web services and Semantic Web, computer networks and communication systems.

Book Data Mining

    Book Details:
  • Author : Krzysztof J. Cios
  • Publisher : Springer Science & Business Media
  • Release : 2007-10-05
  • ISBN : 0387367950
  • Pages : 601 pages

Download or read book Data Mining written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2007-10-05 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Book Knowledge Discovery and Data Mining

Download or read book Knowledge Discovery and Data Mining written by O. Maimon and published by Springer Science & Business Media. This book was released on 2000-12-31 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).

Book Dynamic and Advanced Data Mining for Progressing Technological Development  Innovations and Systemic Approaches

Download or read book Dynamic and Advanced Data Mining for Progressing Technological Development Innovations and Systemic Approaches written by Ali, A B M Shawkat and published by IGI Global. This book was released on 2009-11-30 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book discusses advances in modern data mining research in today's rapidly growing global and technological environment"--Provided by publisher.

Book Knowledge Discovery and Data Mining  Challenges and Realities

Download or read book Knowledge Discovery and Data Mining Challenges and Realities written by Zhu, Xingquan and published by IGI Global. This book was released on 2007-04-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides a focal point for research and real-world data mining practitioners that advance knowledge discovery from low-quality data; it presents in-depth experiences and methodologies, providing theoretical and empirical guidance to users who have suffered from underlying low-quality data. Contributions also focus on interdisciplinary collaborations among data quality, data processing, data mining, data privacy, and data sharing"--Provided by publisher.

Book Advanced Data Mining Tools and Methods for Social Computing

Download or read book Advanced Data Mining Tools and Methods for Social Computing written by Sourav De and published by Academic Press. This book was released on 2022-01-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis. - Provides insights into the latest research trends in social network analysis - Covers a broad range of data mining tools and methods for social computing and analysis - Includes practical examples and case studies across a range of tools and methods - Features coding examples and supplementary data sets in every chapter

Book Knowledge Discovery from Data Streams

Download or read book Knowledge Discovery from Data Streams written by Joao Gama and published by CRC Press. This book was released on 2010-05-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents

Book Interactive Knowledge Discovery and Data Mining in Biomedical Informatics

Download or read book Interactive Knowledge Discovery and Data Mining in Biomedical Informatics written by Andreas Holzinger and published by Springer. This book was released on 2014-06-17 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of = 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning./ppThis state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.

Book Data Mining and Machine Learning Applications

Download or read book Data Mining and Machine Learning Applications written by Rohit Raja and published by John Wiley & Sons. This book was released on 2022-03-02 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.