EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advances in High Temperature Gas Cooled Reactor Fuel Technology

Download or read book Advances in High Temperature Gas Cooled Reactor Fuel Technology written by International Atomic Energy Agency and published by . This book was released on 2012-06 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

Book High Temperature Gas cooled Reactors

Download or read book High Temperature Gas cooled Reactors written by Tetsuaki Takeda and published by Academic Press. This book was released on 2021-02-24 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant. The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection. This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits Considers the societal impact and sustainability concerns and goals throughout the discussion Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems.

Book Advanced and High temperature Gas cooled Reactors

Download or read book Advanced and High temperature Gas cooled Reactors written by and published by . This book was released on 1969 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Technology for an Ultrasafe Reactor

Download or read book The Technology for an Ultrasafe Reactor written by United States. Congress. House. Committee on Science and Technology. Subcommittee on Energy Research and Production and published by . This book was released on 1987 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Storage and Hybridization of Nuclear Energy

Download or read book Storage and Hybridization of Nuclear Energy written by Hitesh Bindra and published by Academic Press. This book was released on 2018-11-22 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. - Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy - Provides insights into the different methodologies and technologies currently available for the storage of energy - Includes case studies from well-known experts working on specific integration concepts around the world

Book Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core

Download or read book Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core written by Shengyao Jiang and published by Springer Nature. This book was released on 2020-11-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.

Book Fully Ceramic Microencapsulated Fuel in High Temperature Gas Cooled Reactors

Download or read book Fully Ceramic Microencapsulated Fuel in High Temperature Gas Cooled Reactors written by Cihang Lu and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Highly innovative nuclear reactor technologies have the potential to meet the global energy demand while reducing carbon emissions. Generation IV reactors, with advances in safety, reliability, sustainability and economic benefits, are currently being investigated. The high-temperature gas-cooled reactor (HTGR), moderated by graphite and cooled by helium, has the highest technology readiness level compared to the other Generation IV reactor designs.Conventional HTGR fuel consists of TRistructural ISOtropic (TRISO) coated fuel particles embedded in a graphite matrix. Several historic HTGRs fueled with conventional fuel have been constructed and operated, including the Peach Bottom Unit No.1 reactor operated in Pennsylvania and the Fort St. Vrain reactor that was operated in Colorado.The FCM fuel consists of TRistructural ISOtropic (TRISO) coated fuel particles embedded in a silicon carbide (SiC) matrix. Compared to the conventional HTGR fuel, the FCM fuel could potentially enhance the safety of the reactor due to the numerous advantages provided by the SiC matrix. The FCM fuel features enhanced ability to retain fission products. The FCM fuel exhibits a greater stability under irradiation and less swelling after irradiation. Moreover, the FCM fuel has better mechanical characteristics and would be less sensitive to physical disturbances. The FCM fuel has higher oxidation resistance and would suffer less damage in air-ingress accidents. The SiC matrix may also increase the proliferation resistance of the FCM fuel.However, due to the replacement of the graphite matrix in the conventional HTGR fuel, the FCM fuel hardens the neutron spectrum in the reactor core. This may further cause economic penalties of an FCM-fueled HTGR as well as a higher fuel temperature which jeopardizes the core safety.This dissertation proved the viability of FCM-fueled HTGRs by answering the following six questions based on analysis of experimental data as well as neutronics and thermal-hydraulics numerical calculations:(1) What are the key changes in fuel cycle performance and fuel cost of HTGRs with the FCM fuel?(2) What is the potential impact of the FCM fuel on reactor performance and safety characteristics of HTGRs?(3) How does the FCM fuel impact anticipated transients and design-basis accidents?(4) What are the most important parameters for each of the design-basis accidents and their sensitivities to the maximum fuel temperature?(5) What is the kinetics of the annealing process of neutron-irradiated SiC?(6) Does the irradiation defect annealing process of SiC significantly impact fuel temperature during design-basis accidents?The reference HTGR core configuration considered was the General Atomics designed 350-MWt prismatic mHTGR which has a prismatic block configuration similar to the Fort St. Vrain reactor.In this dissertation, I identified three FCM fuel options which are able to maintain the fuel cycle length of the reference core. However, because of the higher natural resource requirement, the FCM fuel cycle cost could be up to 74% more expensive than the conventional HTGR fuel. The impact of the FCM fuel on the other parameters which are important to the core safety, including decay power, reactivity temperature coefficients and control rod worth, is minor. I investigated three typical design-basis accidents of the HTGRs, including the pressurized loss of forced cooling accident, the depressurized loss of forced cooling accident and the control rod withdrawal accident. The maximum fuel temperature of an FCM-fuel core could be up to 65 K higher than that of the reference core during normal operating conditions, and the peak maximum fuel temperature of an FCM-fuel core could be up to 55 K higher than that of the reference core during those design-basis accidents. I also studied the sensitivity of the maximum fuel temperature to various parameters of interest during different operating conditions and identified the steady-state power distribution to have the largest impact on the peak maximum fuel temperature during the design-basis accidents. By analyzing acquired experimental data, I elucidated information on the kinetics of the SiC annealing process. I further estimated the maximum possible impact of the SiC annealing process on the maximum fuel temperature of FCM-fueled HTGRs during design-basis accidents based on conservative assumptions. The SiC annealing process would at most increase the peak maximum fuel temperature of an FCM-fueled HTGR by 40 K.According to the calculations conducted, the increase of the maximum fuel temperature caused by the use of the FCM fuel in HTGRs would not exceed 100 K which is minor compared to the maximum fuel temperature of around 1200 K in the reference core during normal operating conditions. Therefore, the use of the FCM fuel in HTGRs is viable.Additionally, by comparing calculation results with experimental data, I demonstrated the validity of the system analysis code RELAP5-3D to conduct thermal-hydraulics calculations of transients in HTGRs.

Book Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

Download or read book Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor written by Willem Frederik Geert van Rooijen and published by IOS Press. This book was released on 2006 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Generation IV Forum is an international nuclear energy research initiative aimed at developing the fourth generation of nuclear reactors, envisaged to enter service halfway the 21st century. One of the Generation IV reactor systems is the Gas Cooled Fast Reactor (GCFR), the subject of study in this thesis. The Generation IV reactor concepts should improve all aspects of nuclear power generation. Within Generation IV, the GCFR concept specifically targets sustainability of nuclear power generation. The Gas Cooled Fast Reactor core power density is high in comparison to other gas cooled reactor concepts. Like all nuclear reactors, the GCFR produces decay heat after shut down, which has to be transported out of the reactor under all circumstances. The layout of the primary system therefore focuses on using natural convection Decay Heat Removal (DHR) where possible, with a large coolant fraction in the core to reduce friction losses.

Book An Evaluation of High temperature Gas cooled Reactors

Download or read book An Evaluation of High temperature Gas cooled Reactors written by Oak Ridge National Laboratory and published by . This book was released on 1969 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal and Flow Design of Helium cooled Reactors

Download or read book Thermal and Flow Design of Helium cooled Reactors written by Gilbert Melese and published by . This book was released on 1984 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This source book provides both an overview of gas-cooled reactors and a detailed look at the high-temperature gas-cooled reactor (HTGR). Taking a worldwide perspective, this book reviews the early development of the HTGR and explores potential future development and applications.

Book Advances in Nuclear Science and Technology

Download or read book Advances in Nuclear Science and Technology written by Paul Greebler and published by Academic Press. This book was released on 2014-05-12 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations. Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapters consider the Doppler effect in fast reactors and the analysis of maximum accidents. This book discusses as well the perturbation theory, which has been widely used in reactor physics for the calculation of eigenvalues. The final chapter deals with the use of X-rays, gamma rays, and high-energy electrons in industrial applications. This book is a valuable resource for nuclear engineers, radiation chemists, food technologists, and research workers.

Book Preliminary Results of the Combined Third and Fourth Very High Temperature Gas Cooled Reactor Irradiation in the Advanced Test Reactor

Download or read book Preliminary Results of the Combined Third and Fourth Very High Temperature Gas Cooled Reactor Irradiation in the Advanced Test Reactor written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The United States Department of Energy's Very High Temperature Reactor Technology Development Office (VHTR-TDO) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation high temperature gas-cooled reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments were combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this combined experiment was to provide data on fission product migration and retention in a high temperature gas-cooled reactor (HTGR), the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are extremely similar. The design of the experiment will be discussed followed by its progress and status to date.

Book Nuclear Power

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1992-02-01
  • ISBN : 0309043956
  • Pages : 234 pages

Download or read book Nuclear Power written by National Research Council and published by National Academies Press. This book was released on 1992-02-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The construction of nuclear power plants in the United States is stopping, as regulators, reactor manufacturers, and operators sort out a host of technical and institutional problems. This volume summarizes the status of nuclear power, analyzes the obstacles to resumption of construction of nuclear plants, and describes and evaluates the technological alternatives for safer, more economical reactors. Topics covered include: Institutional issues-including regulatory practices at the federal and state levels, the growing trends toward greater competition in the generation of electricity, and nuclear and nonnuclear generation options. Critical evaluation of advanced reactors-covering attributes such as cost, construction time, safety, development status, and fuel cycles. Finally, three alternative federal research and development programs are presented.

Book High Temperature Gas Cooled Reactor Technology Development Program

Download or read book High Temperature Gas Cooled Reactor Technology Development Program written by and published by . This book was released on 1989 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The High-Temperature Gas-Cooled Reactor (HTGR) Program being carried out under the US Department of Energy (DOE) continues to emphasize the development of modular high-temperature gas-cooled reactors (MHTGRs) possessing a high degree of inherent safety. The emphasis at this time is to develop the preliminary design of the reference MHTGR and to develop the associated technology base and licensing infrastructure in support of future reactor deployment. A longer-term objective is to realize the full high-temperature potential of HTGRs in gas turbine and high-temperature, process-heat applications. This document summarizes the activities of the HTGR Technology Development Program for the period ending December 31, 1987.

Book Nuclear Energy for Hydrogen Production

Download or read book Nuclear Energy for Hydrogen Production written by Karl Verfondern and published by Forschungszentrum Jülich. This book was released on 2007 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas cooled Reactors with Emphasis on Advanced Systems

Download or read book Gas cooled Reactors with Emphasis on Advanced Systems written by International Atomic Energy Agency and published by . This book was released on 1976 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: