Download or read book Diagnostic Radiology Physics written by International Atomic Energy Agency and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is aimed at students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides a comprehensive overview of the basic medical physics knowledge required in the form of a syllabus for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.
Download or read book Physics for Diagnostic Radiology Third Edition written by Philip Palin Dendy and published by CRC Press. This book was released on 1999-05-01 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics for Diagnostic Radiology, Second Edition is a complete course for radiologists studying for the FRCR part one exam and for physicists and radiographers on specialized graduate courses in diagnostic radiology. It follows the guidelines issued by the European Association of Radiology for training. A comprehensive, compact primer, its analytical approach deals in a logical order with the wide range of imaging techniques available and explains how to use imaging equipment. It includes the background physics necessary to understand the production of digitized images, nuclear medicine, and magnetic resonance imaging.
Download or read book Treatment Planning of High Dose Rate Brachytherapy Mathematical Modelling and Optimization written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2021-01-12 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread class of diseases that each year affects millions of people. It is mostly treated with chemotherapy, surgery, radiation therapy, or combinations thereof. High doserate (HDR) brachytherapy (BT) is one modality of radiation therapy, which is used to treat for example prostate cancer and gynecologic cancer. In BT, catheters (i.e., hollow needles) or applicators are used to place a single, small, but highly radioactive source of ionizing radiation close to or within a tumour, at dwell positions. An emerging technique for HDR BT treatment is intensity modulated brachytherapy (IMBT), in which static or dynamic shields are used to further shape the dose distribution, by hindering the radiation in certain directions. The topic of this thesis is the application of mathematical optimization to model and solve the treatment planning problem. The treatment planning includes decisions on catheter placement, that is, how many catheters to use and where to place them, as well as decisions for dwell times. Our focus is on the latter decisions. The primary treatment goals are to give the tumour a sufficiently high radiation dose while limiting the dose to the surrounding healthy organs, to avoid severe side effects. Because these aims are typically in conflict, optimization models of the treatment planning problem are inherently multiobjective. Compared to manual treatment planning, there are several advantages of using mathematical optimization for treatment planning. First, the optimization of treatment plans requires less time, compared to the time-consuming manual planning. Secondly, treatment plan quality can be improved by using optimization models and algorithms. Finally, with the use of sophisticated optimization models and algorithms the requirements of experience and skill level for the planners are lower. The use of optimization for treatment planning of IMBT is especially important because the degrees of freedom are too many for manual planning. The contributions of this thesis include the study of properties of treatment planning models, suggestions for extensions and improvements of proposed models, and the development of new optimization models that take clinically relevant, but uncustomary aspects, into account in the treatment planning. A common theme is the modelling of constraints on dosimetric indices, each of which is a restriction on the portion of a volume that receives at least a specified dose, or on the lowest dose that is received by a portion of a volume. Modelling dosimetric indices explicitly yields mixed-integer programs which are computationally demanding to solve. We have therefore investigated approximations of dosimetric indices, for example using smooth non-linear functions or convex functions. Contributions of this thesis are also a literature review of proposed treatment planning models for HDR BT, including mathematical analyses and comparisons of models, and a study of treatment planning for IMBT, which shows how robust optimization can be used to mitigate the risks from rotational errors in the shield placement. Cancer är en grupp av sjukdomar som varje år drabbar miljontals människor. De vanligaste behandlingsformerna är cellgifter, kirurgi, strålbehandling eller en kombination av dessa. I denna avhandling studeras högdosrat brachyterapi (HDR BT), vilket är en form av strålbehandling som till exempel används vid behandling av prostatacancer och gynekologisk cancer. Vid brachyterapibehandling används ihåliga nålar eller applikatorer för att placera en millimeterstor strålkälla antingen inuti eller intill en tumör. I varje nål finns det ett antal så kallade dröjpositioner där strålkällan kan stanna en viss tid för att bestråla den omkringliggande vävnaden, i alla riktningar. Genom att välja lämpliga tider för dröjpositionerna kan dosfördelningen formas efter patientens anatomi. Utöver HDR BT studeras också den nya tekniken intensitetsmodulerad brachyterapi (IMBT) vilket är en variation på HDR BT där skärmning används för att minska strålningen i vissa riktningar vilket gör det möjligt att forma dosfördelningen bättre. Planeringen av en behandling med HDR BT omfattar hur många nålar som ska användas, var de ska placeras samt hur länge strålkällan ska stanna i de olika dröjpositionerna. För HDR BT kan dessa vara flera hundra stycken medan det för IMBT snarare handlar om tusentals möjliga kombinationer av dröjpositioner och inställningar av skärmarna. Planeringen resulterar i en dosplan som beskriver hur hög stråldos som tumören och intilliggande frisk vävnad och riskorgan utsätts för. Dosplaneringen kan formuleras som ett matematiskt optimeringsproblem vilket är ämnet för avhandlingen. De övergripande målsättningarna för behandlingen är att ge en tillräckligt hög stråldos till tumören, för att döda alla cancerceller, samt att undvika att bestråla riskorgan eftersom det kan ge allvarliga biverkningar. Då alla målsättningarna inte samtidigt kan uppnås fullt ut så fås optimeringsproblem där flera målsättningar behöver prioriteras mot varandra. Utöver att dosplanen uppfyller kliniska behandlingsriktlinjer så är också tidsaspekten av planeringen viktig eftersom det är vanligt att den görs medan patienten är bedövad eller sövd. Vid utvärdering av en dosplan används dos-volymmått. För en tumör anger ett dosvolymmått hur stor andel av tumören som får en stråldos som är högre än en specificerad nivå. Dos-volymmått utgör en viktig del av målen för dosplaner som tas upp i kliniska behandlingsriktlinjer och ett exempel på ett sådant mål vid behandling av prostatacancer är att 95% av prostatans volym ska få en stråldos som är minst den föreskrivna dosen. Dos-volymmått utläses ur de kliniskt betydelsefulla dos-volym histogrammen som för varje stråldosnivå anger motsvarande volym som erhåller den dosen. En fördel med att använda matematisk optimering för dosplanering är att det kan spara tid jämfört med manuell planering. Med väl utvecklade modeller så finns det också möjlighet att skapa bättre dosplaner, till exempel genom att riskorganen nås av en lägre dos men med bibehållen dos till tumören. Vidare så finns det även fördelar med en process som inte är lika personberoende och som inte kräver erfarenhet i lika stor utsträckning som manuell dosplanering i dagsläget gör. Vid IMBT är det dessutom så många frihetsgrader att manuell planering i stort sett blir omöjligt. I avhandlingen ligger fokus på hur dos-volymmått kan användas och modelleras explicit i optimeringsmodeller, så kallade dos-volymmodeller. Detta omfattar såväl analys av egenskaper hos befintliga modeller, utvidgningar av tidigare använda modeller samt utveckling av nya optimeringsmodeller. Eftersom dos-volymmodeller modelleras som heltalsproblem, vilka är beräkningskrävande att lösa, så är det också viktigt att utveckla algoritmer som kan lösa dem tillräckligt snabbt för klinisk användning. Ett annat mål för modellutvecklingen är att kunna ta hänsyn till fler kriterier som är kliniskt relevanta men som inte ingår i dos-volymmodeller. En sådan kategori av mått är hur dosen är fördelad rumsligt, exempelvis att volymen av sammanhängande områden som får en alldeles för hög dos ska vara liten. Sådana områden går dock inte att undvika helt eftersom det är typiskt för dosplaner för brachyterapi att stråldosen fördelar sig ojämnt, med väldigt höga doser till små volymer precis intill strålkällorna. Vidare studeras hur små fel i inställningarna av skärmningen i IMBT påverkar dosplanens kvalitet och de olika utvärderingsmått som används kliniskt. Robust optimering har använts för att säkerställa att en dosplan tas fram som är robust sett till dessa möjliga fel i hur skärmningen är placerad. Slutligen ges en omfattande översikt över optimeringsmodeller för dosplanering av HDR BT och speciellt hur optimeringsmodellerna hanterar de motstridiga målsättningarna.
Download or read book Diagnostic Radiology Recent Advances and Applied Physics in Imaging written by Arun Kumar Gupta and published by JP Medical Ltd. This book was released on 2013-07-30 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has been fully updated to provide radiologists with all the recent technological advances in diagnostic radiology. Divided into six sections, it covers all the key aspects of the imaging – ultrasound, computed tomography, magnetic resonance imaging, radiography and interventional radiography, and contrast media. The final section discusses miscellaneous topics including evidence based radiology, radiation protection, molecular imaging, planning a modern imaging department, and common drugs used. A separate chapter is dedicated to picture archiving and data management. This comprehensive new edition includes nearly 600 full colour radiological images and illustrations. Key points Fully updated, new edition presenting recent technological advances in diagnostic radiology Covers all key imaging techniques Includes nearly 600 radiological photographs and illustrations Previous edition published in 2007
Download or read book Stereotactic Body Radiation Therapy written by Simon S. Lo and published by Springer Science & Business Media. This book was released on 2012-08-28 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.
Download or read book The Phantoms of Medical and Health Physics written by Larry A. DeWerd and published by Springer Science & Business Media. This book was released on 2013-11-25 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose and subject of this book is to provide a comprehensive overview of all types of phantoms used in medical imaging, therapy, nuclear medicine and health physics. For ionizing radiation, dosimetry with respect to issues of material composition, shape, and motion/position effects are all highlighted. For medical imaging, each type of technology will need specific materials and designs, and the physics and indications will be explored for each type. Health physics phantoms are concerned with some of the same issues such as material heterogeneity, but also unique issues such as organ-specific radiation dose from sources distributed in other organs. Readers will be able to use this book to select the appropriate phantom from a vendor at a clinic, to learn from as a student, to choose materials for custom phantom design, to design dynamic features, and as a reference for a variety of applications. Some of the information enclosed is found in other sources, divided especially along the three categories of imaging, therapy, and health physics. To our knowledge, even though professionally, many medical physicists need to bridge the three catagories described above.
Download or read book Imaging Physics Case Review E Book written by R. Brad Abrahams and published by Elsevier Health Sciences. This book was released on 2019-01-01 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the critical physics content you need to know with this new title in the popular Case Review series. Imaging Physics Case Review offers a highly illustrated, case-based preparation for board review to help residents and recertifying radiologists succeed on exams and demonstrate a clinical understanding of physics, patient safety, and improvement of imaging accuracy and interpretation. - Presents 150 high-yield case studies organized by level of difficulty, with multiple-choice questions, answers, and rationales that mimic the format of certification exams. - Uses short, easily digestible chapters and high-quality illustrations for efficient, effective learning and exam preparation. - Discusses current advances in all modalities, ensuring that your study is up-to-date and clinically useful. - Covers today's key physics topics including radiation safety and methods to prevent patient harm; how to reduce artifacts; basics of radiation doses including dose reduction strategies; cardiac CT physics; advanced ultrasound techniques; and how to optimize image quality using physics principles. - Enhanced eBook version included with purchase, which allows you to access all of the text, figures, and references from the book on a variety of devices
Download or read book Medical Physics written by Jean A. Pope and published by Heinemann. This book was released on 1999 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work covers the medical physics option for the EDEXCEL syllabus. It covers topics such as magnetic resonance imaging, ultrasound, X-ray and nuclear medicine. Included is a section of exam questions helping students to prepare thoroughly.
Download or read book Monte Carlo Methods for Radiation Transport written by Oleg N. Vassiliev and published by Springer. This book was released on 2016-10-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals—giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.
Download or read book Medical Imaging Physics written by William R. Hendee and published by Wiley-Liss. This book was released on 2002 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Hendee and Russell Ritenour's comprehensive text provides the tools necessary to be comfortable with the physical principles, technology concepts, equiment, and procedures used in diagnostic imaging, as well as to appreciate the technological capabilities and limitations of the discipline. Readers need not possess a background in physics. Broadly accessible, Medical Imaging Physics covers all aspects of image formation in modern medical imaging modalities, such as radiography, ultrasonography, computed tomopgraphy(CT), nuclear imaging, and magnetic resonance. Other topics covered include; Digital x-ray imaging Doppler ultrasound Helical CT scanning Accumulation and analysis of nuclear data Experimental radiobiology Radiation protection and safety
Download or read book Nuclear Medicine Physics written by Joao Jose De Lima and published by CRC Press. This book was released on 2016-04-19 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological
Download or read book The Essential Physics of Medical Imaging written by Jerrold T. Bushberg and published by Lippincott Williams & Wilkins. This book was released on 2011-12-28 with total page 1049 pages. Available in PDF, EPUB and Kindle. Book excerpt: This renowned work is derived from the authors' acclaimed national review course (“Physics of Medical Imaging") at the University of California-Davis for radiology residents. The text is a guide to the fundamental principles of medical imaging physics, radiation protection and radiation biology, with complex topics presented in the clear and concise manner and style for which these authors are known. Coverage includes the production, characteristics and interactions of ionizing radiation used in medical imaging and the imaging modalities in which they are used, including radiography, mammography, fluoroscopy, computed tomography and nuclear medicine. Special attention is paid to optimizing patient dose in each of these modalities. Sections of the book address topics common to all forms of diagnostic imaging, including image quality and medical informatics as well as the non-ionizing medical imaging modalities of MRI and ultrasound. The basic science important to nuclear imaging, including the nature and production of radioactivity, internal dosimetry and radiation detection and measurement, are presented clearly and concisely. Current concepts in the fields of radiation biology and radiation protection relevant to medical imaging, and a number of helpful appendices complete this comprehensive textbook. The text is enhanced by numerous full color charts, tables, images and superb illustrations that reinforce central concepts. The book is ideal for medical imaging professionals, and teachers and students in medical physics and biomedical engineering. Radiology residents will find this text especially useful in bolstering their understanding of imaging physics and related topics prior to board exams.
Download or read book Christensen s Physics of Diagnostic Radiology written by Thomas S. Curry and published by Lippincott Williams & Wilkins. This book was released on 1990 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth Edition of this text provides a clear understanding of the physics principles essential to getting maximum diagnostic value from the full range of current and emerging imaging technologies. Updated material added in areas such as x-ray generators (solid-state devices), xerography (liquid toner), CT scanners (fast-imaging technology) and ultrasound (color Doppler).
Download or read book Advancing Nuclear Medicine Through Innovation written by National Research Council and published by National Academies Press. This book was released on 2007-09-11 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.
Download or read book Diagnostic Radiology Physics with MATLAB written by Johan Helmenkamp and published by CRC Press. This book was released on 2020-11-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imaging modalities in radiology produce ever-increasing amounts of data which need to be displayed, optimized, analyzed and archived: a "big data" as well as an "image processing" problem. Computer programming skills are rarely emphasized during the education and training of medical physicists, meaning that many individuals enter the workplace without the ability to efficiently solve many real-world clinical problems. This book provides a foundation for the teaching and learning of programming for medical physicists and other professions in the field of Radiology and offers valuable content for novices and more experienced readers alike. It focuses on providing readers with practical skills on how to implement MATLAB® as an everyday tool, rather than on solving academic and abstract physics problems. Further, it recognizes that MATLAB is only one tool in a medical physicist’s toolkit and shows how it can be used as the "glue" to integrate other software and processes together. Yet, with great power comes great responsibility. The pitfalls to deploying your own software in a clinical environment are also clearly explained. This book is an ideal companion for all medical physicists and medical professionals looking to learn how to utilize MATLAB in their work. Features Encompasses a wide range of medical physics applications in diagnostic and interventional radiology Advances the skill of the reader by taking them through real-world practical examples and solutions with access to an online resource of example code The diverse examples of varying difficulty make the book suitable for readers from a variety of backgrounds and with different levels of programming experience.
Download or read book Encyclopaedia of Medical Physics written by Slavik Tabakov and published by CRC Press. This book was released on 2021-07-19 with total page 1083 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains over 3300 entries with accompanying diagrams, images, formulas, further reading, and examples Covers both the classical and newest elements in medical imaging, radiotherapy, and radiation protection Discusses material at a level accessible to graduate and postgraduate students in medical physics and related disciplines as well as medical specialists and researchers.
Download or read book Handbook of Medical Imaging written by Jacob Beutel and published by SPIE Press. This book was released on 2000 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.