EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advanced Sequential Monte Carlo Methods and Their Applications to Sparse Sensor Network for Detection and Estimation

Download or read book Advanced Sequential Monte Carlo Methods and Their Applications to Sparse Sensor Network for Detection and Estimation written by Kai Kang and published by . This book was released on 2016 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general state space models present a flexible framework for modeling dynamic systems and therefore have vast applications in many disciplines such as engineering, economics, biology, etc. However, optimal estimation problems of non-linear non-Gaussian state space models are analytically intractable in general. Sequential Monte Carlo (SMC) methods become a very popular class of simulation-based methods for the solution of optimal estimation problems. The advantages of SMC methods in comparison with classical filtering methods such as Kalman Filter and Extended Kalman Filter are that they are able to handle non-linear non-Gaussian scenarios without relying on any local linearization techniques. In this thesis, we present an advanced SMC method and the study of its asymptotic behavior. We apply the proposed SMC method in a target tracking problem using different observation models. Specifically, a distributed SMC algorithm is developed for a wireless sensor network (WSN) that incorporates with an informative-sensor detection technique. The novel SMC algorithm is designed to surmount the degeneracy problem by employing a multilevel Markov chain Monte Carlo (MCMC) procedure constructed by engaging drift homotopy and likelihood bridging techniques. The observations are gathered only from the informative sensors, which are sensing useful observations of the nearby moving targets. The detection of those informative sensors, which are typically a small portion of the WSN, is taking place by using a sparsity-aware matrix decomposition technique. Simulation results showcase that our algorithm outperforms current popular tracking algorithms such as bootstrap filter and auxiliary particle filter in many scenarios.

Book Sequential Monte Carlo Methods for Nonlinear Discrete Time Filtering

Download or read book Sequential Monte Carlo Methods for Nonlinear Discrete Time Filtering written by Marcelo G. and published by Springer Nature. This book was released on 2022-06-01 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

Book An Introduction to Sequential Monte Carlo

Download or read book An Introduction to Sequential Monte Carlo written by Nicolas Chopin and published by Springer Nature. This book was released on 2020-10-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book Fast Sequential Monte Carlo Methods for Counting and Optimization

Download or read book Fast Sequential Monte Carlo Methods for Counting and Optimization written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2013-11-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problems Numerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative error A new generic sequential importance sampling algorithm alongside extensive numerical results An appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods.

Book Handbook of Monte Carlo Methods

Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Book Simulation and the Monte Carlo Method

Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2016-10-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.

Book Monte Carlo Methods

    Book Details:
  • Author : Adrian Barbu
  • Publisher : Springer Nature
  • Release : 2020-02-24
  • ISBN : 9811329710
  • Pages : 433 pages

Download or read book Monte Carlo Methods written by Adrian Barbu and published by Springer Nature. This book was released on 2020-02-24 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.

Book Monte Carlo and Quasi Monte Carlo Sampling

Download or read book Monte Carlo and Quasi Monte Carlo Sampling written by Christiane Lemieux and published by Springer Science & Business Media. This book was released on 2009-04-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.

Book Sequential Monte Carlo Methods with Applications to Communication Channels

Download or read book Sequential Monte Carlo Methods with Applications to Communication Channels written by Sirish Boddikurapati and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimating the state of a system from noisy measurements is a problem which arises in a variety of scientific and industrial areas which include signal processing, communications, statistics and econometrics. Recursive filtering is one way to achieve this by incorporating noisy observations as they become available with prior knowledge of the system model. Bayesian methods provide a general framework for dynamic state estimation problems. The central idea behind this recursive Bayesian estimation is computing the probability density function of the state vector of the system conditioned on the measurements. However, the optimal solution to this problem is often intractable because it requires high-dimensional integration. Although we can use the Kalman lter in the case of a linear state space model with Gaussian noise, this method is not optimum for a non-linear and non-Gaussian system model. There are many new methods of filtering for the general case. The main emphasis of this thesis is on one such recently developed filter, the particle lter [2,3,6]. In this thesis, a detailed introduction to particle filters is provided as well as some guidelines for the efficient implementation of the particle lter. The application of particle lters to various communication channels like detection of symbols over the channels, capacity calculation of the channel are discussed.

Book Lectures on Monte Carlo Methods

Download or read book Lectures on Monte Carlo Methods written by Neal Noah Madras and published by American Mathematical Soc.. This book was released on 2002 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the ``curse of dimensionality'', which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathematical models that arise in diverse areas of application. The book is based on lectures in a graduate course given by the author. It examines theoretical properties of Monte Carlo methods as well as practical issues concerning their computer implementation and statistical analysis. The only formal prerequisite is an undergraduate course in probability. The book is intended to be accessible to students from a wide range of scientific backgrounds. Rather than being a detailed treatise, it covers the key topics of Monte Carlo methods to the depth necessary for a researcher to design, implement, and analyze a full Monte Carlo study of a mathematical or scientific problem. The ideas are illustrated with diverse running examples. There are exercises sprinkled throughout the text. The topics covered include computer generation of random variables, techniques and examples for variance reduction of Monte Carlo estimates, Markov chain Monte Carlo, and statistical analysis of Monte Carlo output.

Book Monte Carlo

    Book Details:
  • Author : George Fishman
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 1475725531
  • Pages : 721 pages

Download or read book Monte Carlo written by George Fishman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.

Book Monte Carlo Methods

    Book Details:
  • Author : Malvin H. Kalos
  • Publisher : John Wiley & Sons
  • Release : 2009-06-10
  • ISBN : 3527626220
  • Pages : 215 pages

Download or read book Monte Carlo Methods written by Malvin H. Kalos and published by John Wiley & Sons. This book was released on 2009-06-10 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research. The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrödinger equation by random walks. The text includes sample problems that readers can solve by themselves to illustrate the content of each chapter. This is the second, completely revised and extended edition of the successful monograph, which brings the treatment up to date and incorporates the many advances in Monte Carlo techniques and their applications, while retaining the original elementary but general approach.

Book Elements of Sequential Monte Carlo

Download or read book Elements of Sequential Monte Carlo written by Christian A. Naesseth and published by . This book was released on 2019-11-12 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a tutorial style, this monograph introduces the basics of Sequential Monte Carlo, discusses practical issues, and reviews theoretical results before guiding the reader through a series of advanced topics to give a complete overview of the topic and its application to machine learning problems.

Book The Monte Carlo Methods

    Book Details:
  • Author : Abdo Abou Jaoudé
  • Publisher : BoD – Books on Demand
  • Release : 2022-03-09
  • ISBN : 1839687592
  • Pages : 234 pages

Download or read book The Monte Carlo Methods written by Abdo Abou Jaoudé and published by BoD – Books on Demand. This book was released on 2022-03-09 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: In applied mathematics, the name Monte Carlo is given to the method of solving problems by means of experiments with random numbers. This name, after the casino at Monaco, was first applied around 1944 to the method of solving deterministic problems by reformulating them in terms of a problem with random elements, which could then be solved by large-scale sampling. But, by extension, the term has come to mean any simulation that uses random numbers. Monte Carlo methods have become among the most fundamental techniques of simulation in modern science. This book is an illustration of the use of Monte Carlo methods applied to solve specific problems in mathematics, engineering, physics, statistics, and science in general.

Book Theory  Application  and Implementation of Monte Carlo Method in Science and Technology

Download or read book Theory Application and Implementation of Monte Carlo Method in Science and Technology written by Pooneh Saidi Bidokhti and published by BoD – Books on Demand. This book was released on 2019-12-18 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is a numerical technique to model the probability of all possible outcomes in a process that cannot easily be predicted due to the interference of random variables. It is a technique used to understand the impact of risk, uncertainty, and ambiguity in forecasting models. However, this technique is complicated by the amount of computer time required to achieve sufficient precision in the simulations and evaluate their accuracy. This book discusses the general principles of the Monte Carlo method with an emphasis on techniques to decrease simulation time and increase accuracy.

Book Elements of Sequential Monte Carlo

    Book Details:
  • Author : CHRISTIAN A. NAESSETH;FREDRIK LINDSTEN;THOMAS B. S.
  • Publisher :
  • Release : 2019
  • ISBN : 9781680836332
  • Pages : 128 pages

Download or read book Elements of Sequential Monte Carlo written by CHRISTIAN A. NAESSETH;FREDRIK LINDSTEN;THOMAS B. S. and published by . This book was released on 2019 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a tutorial style, this monograph introduces the basics of Sequential Monte Carlo, discusses practical issues, and reviews theoretical results before guiding the reader through a series of advanced topics to give a complete overview of the topic and its application to machine learning problems.