Download or read book Advanced Biosignal Processing written by Amine Nait-Ali and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generally speaking, Biosignals refer to signals recorded from the human body. They can be either electrical (e. g. Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), etc. ) or non-electrical (e. g. breathing, movements, etc. ). The acquisition and processing of such signals play an important role in clinical routines. They are usually considered as major indicators which provide clinicians and physicians with useful information during diagnostic and monitoring processes. In some applications, the purpose is not necessarily medical. It may also be industrial. For instance, a real-time EEG system analysis can be used to control and analyze the vigilance of a car driver. In this case, the purpose of such a system basically consists of preventing crash risks. Furthermore, in certain other appli- tions,asetof biosignals (e. g. ECG,respiratorysignal,EEG,etc. ) can be used toc- trol or analyze human emotions. This is the case of the famous polygraph system, also known as the “lie detector”, the ef ciency of which remains open to debate! Thus when one is dealing with biosignals, special attention must be given to their acquisition, their analysis and their processing capabilities which constitute the nal stage preceding the clinical diagnosis. Naturally, the diagnosis is based on the information provided by the processing system.
Download or read book Advanced Methods of Biomedical Signal Processing written by Sergio Cerutti and published by John Wiley & Sons. This book was released on 2011-06-09 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as multisource and multiscale integration of information for physiology and clinical decision; the impact of advanced methods of signal processing in cardiology and neurology; the integration of signal processing methods with a modelling approach; complexity measurement from biomedical signals; higher order analysis in biomedical signals; advanced methods of signal and data processing in genomics and proteomics; and classification and parameter enhancement.
Download or read book Advanced Biosignal Processing and Diagnostic Methods written by Christoph Hintermüller and published by BoD – Books on Demand. This book was released on 2016-07-21 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personal health and well-being was and is important for all individuals. This includes the way people are living, what they do to stay healthy as well as a profound, well-informed diagnosis and appropriate treatment in case of disease. To achieve these goals, modern medicine is provided with a large variety of tools to assess a patient's health state and collect the information required for a proper diagnosis and treatment, which is tailored to the patient's needs. Many of these available tools use signals either generated by the human body, for example, electroencephalogram (EEG) and electrocardiogram (ECG), or by interacting with the human body while traversing it like microwaves or reflected visible light that is recorded by a video camera. The biosignals recorded by the available and newly developed methods have to be processed to extract the information about the patient's condition and, analyzed tissue and cells. This book presents a small selection of the recent developments in the field of biosignal processing. The covered diagnostic tools and methods include the assessment of respiratory state through gait analysis, the contactless monitoring of cardiovascular and respiratory parameters using microwaves, a non-linear approach to extract the fetal ECG from non-invasive abdominal recordings, identification of epileptic networks from pre-surgical neurophysiological recordings and an improved method to obtain and validate the copy number alterations parameter, which are considered an important marker in cancer classification.
Download or read book Biomedical Signal Analysis written by Rangaraj M. Rangayyan and published by John Wiley & Sons. This book was released on 2015-04-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications 800 mathematical expressions and equations Practical questions, problems and laboratory exercises Includes fractals and chaos theory with biomedical applications
Download or read book Machine Learning in Bio Signal Analysis and Diagnostic Imaging written by Nilanjan Dey and published by Academic Press. This book was released on 2018-11-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
Download or read book Biosignal Processing written by Hualou Liang and published by CRC Press. This book was released on 2012-10-17 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rise of advanced computerized data collection systems, monitoring devices, and instrumentation technologies, large and complex datasets accrue as an inevitable part of biomedical enterprise. The availability of these massive amounts of data offers unprecedented opportunities to advance our understanding of underlying biological and physiol
Download or read book Practical Biomedical Signal Analysis Using MATLAB written by Katarzyn J. Blinowska and published by CRC Press. This book was released on 2011-09-12 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Biomedical Signal Analysis Using MATLAB® presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data. The first several chapters of the text describe signal analysis techniques—including the newest and most advanced methods—in an easy and accessible way. MATLAB routines are listed when available and freely available software is discussed where appropriate. The final chapter explores the application of the methods to a broad range of biomedical signals, highlighting problems encountered in practice. A unified overview of the field, this book explains how to properly use signal processing techniques for biomedical applications and avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods.
Download or read book Signal Processing and Machine Learning for Biomedical Big Data written by Ervin Sejdic and published by CRC Press. This book was released on 2018-07-04 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.
Download or read book Biomedical Signal Processing for Healthcare Applications written by Varun Bajaj and published by CRC Press. This book was released on 2021-07-21 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.
Download or read book Biomedical Signal and Image Processing written by Kayvan Najarian and published by CRC Press. This book was released on 2016-04-19 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.
Download or read book Classification and Clustering in Biomedical Signal Processing written by Dey, Nilanjan and published by IGI Global. This book was released on 2016-04-07 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.
Download or read book Biomedical Signals and Sensors I written by Eugenijus Kaniusas and published by Springer Science & Business Media. This book was released on 2012-04-12 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set focuses on the interface between physiologic mechanisms and diagnostic human engineering. Today numerous biomedical sensors are commonplace in clinical practice. The registered biosignals reflect mostly vital physiologic phenomena. In order to adequately apply biomedical sensors and reasonably interpret the corresponding biosignals, a proper understanding of the involved physiologic phenomena, their influence on the registered biosignals, and the technology behind the sensors is necessary. The first volume is devoted to the interface between physiologic mechanisms and arising biosignals, whereas the second volume is focussed on the interface between biosignals and biomedical sensors. The physiologic mechanisms behind the biosignals are described from the basic cellular level up to their advanced mutual coordination level during sleep. The arising biosignals are discussed within the scope of vital physiologic phenomena to foster their understanding and comprehensive analysis.
Download or read book Emerging Trends of Biomedical Circuits and Systems written by Mohamad Sawan and published by . This book was released on 2021-12-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science and engineering disciplines are provoking fundamental and applied discoveries in numerous applications, such as to deeply understand brain functions, precisely diagnose diseases, and to then properly address these. The later advances call upon biomedical integrated circuits and systems (BioCAS) to provide needed research tools. In fact, with the increase of the personalized healthcare market and BioCAS featuring wearability, implantability and intelligence, it has become significantly more important to address these emerging trends. These circuits and systems deal with various signals and images such as electrophysiological, electrochemical, optical, and magnetic, which require various front-end circuits to acquire signals and usually cancel out the noise. With the booming artificial intelligence methods, these biosignals became mandatory for the monitoring, detection, diagnosis and even prediction of diseases for example.This monograph focusses on the current research activities and emerging trends that relate to the above-mentioned functionalities, and it should be of interest to students, researchers and engineers active in the fields related to Circuits and Systems for Biomedical Engineering.Section I is a summary of the main BioCAS research interests, and in Section II various biosignal acquisition circuits techniques are discussed. In Section III the authors cover circuits for biosignal processing, with emphasis on the newly emerging artificial intelligence. Sections IV and V contain a review of wireless power harvesting and communication circuits. Sections VI and VII represent circuits that help miniaturizing biomedical imaging systems, and other systems intended for the detection of chemical and molecular assays. Section VIII describes one of the main neural prostheses intended to address vision disorders, whilst the last section reviews electrode-tissue interfaces that essentially bridge the circuits and systems with the human body.
Download or read book Biosignal and Medical Image Processing written by John L. Semmlow and published by CRC Press. This book was released on 2021-10-01 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classify
Download or read book Hidden Biometrics written by Amine Nait-ali and published by Springer Nature. This book was released on 2019-10-12 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores intrinsic and human body part biometrics and biometrics of human physiological activities, invisible to the naked eye. This includes, for instance, brain structures, skeleton morphology, heart activity, etc. These human body parts can only be visualized using specific imaging techniques or sensors, commonly employed in the biomedical engineering field. As such, the book connects two fields, namely biometric security and biomedical engineering. The book is suitable for advanced graduate and postgraduate students, engineers and researchers, especially in Signal and Image Processing, Biometrics, and Biomedical Engineering.
Download or read book Advances in Biomedical Engineering written by Pascal Verdonck and published by Elsevier. This book was released on 2008-09-11 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this essential reference is to bring together the interdisciplinary areas of biomedical engineering education. Contributors review the latest advances in biomedical engineering research through an educational perspective, making the book useful for students and professionals alike. Topics range from biosignal analysis and nanotechnology to biophotonics and cardiovascular medical devices. - Provides an educational review of recent advances - Focuses on biomedical high technology - Features contributions from leaders in the field
Download or read book Biomedical Signal Analysis written by Fabian J. Theis and published by MIT Press. This book was released on 2010 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to innovative methods in the field of biomedical signal analysis, covering both theory and practice. Biomedical signal analysis has become one of the most important visualization and interpretation methods in biology and medicine. Many new and powerful instruments for detecting, storing, transmitting, analyzing, and displaying images have been developed in recent years, allowing scientists and physicians to obtain quantitative measurements to support scientific hypotheses and medical diagnoses. This book offers an overview of a range of proven and new methods, discussing both theoretical and practical aspects of biomedical signal analysis and interpretation.After an introduction to the topic and a survey of several processing and imaging techniques, the book describes a broad range of methods, including continuous and discrete Fourier transforms, independent component analysis (ICA), dependent component analysis, neural networks, and fuzzy logic methods. The book then discusses applications of these theoretical tools to practical problems in everyday biosignal processing, considering such subjects as exploratory data analysis and low-frequency connectivity analysis in fMRI, MRI signal processing including lesion detection in breast MRI, dynamic cerebral contrast-enhanced perfusion MRI, skin lesion classification, and microscopic slice image processing and automatic labeling. Biomedical Signal Analysis can be used as a text or professional reference. Part I, on methods, forms a self-contained text, with exercises and other learning aids, for upper-level undergraduate or graduate-level students. Researchers or graduate students in systems biology, genomic signal processing, and computer-assisted radiology will find both parts I and II (on applications) a valuable handbook.