EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Active Neutron Interrogation to Detect Shielded Fissionable Material

Download or read book Active Neutron Interrogation to Detect Shielded Fissionable Material written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (

Book Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

Download or read book Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including>2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

Book Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

Download or read book Addressing Different Active Neutron Interrogation Signatures from Fissionable Material written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

Book Active Interrogation in Nuclear Security

Download or read book Active Interrogation in Nuclear Security written by Igor Jovanovic and published by Springer. This book was released on 2018-06-07 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the state-of-the-art in active interrogation, widely recognized as indispensable methods for addressing current and future nuclear security needs. Written by a leading group of science and technology experts, this comprehensive reference presents technologies and systems in the context of the fundamental physics challenges and practical requirements. It compares the features, limitations, technologies, and impact of passive and active measurement techniques; describes radiation sources for active interrogation including electron and ion accelerators, intense lasers, and radioisotope-based sources; and it describes radiation detectors used for active interrogation. Entire chapters are devoted to data acquisition and processing systems, modeling and simulation, data interpretation and algorithms, and a survey of working active measurement systems. Active Interrogation in Nuclear Security is structured to appeal to a range of audiences, including graduate students, active researchers in the field, and policy analysts. The first book devoted entirely to active interrogation Presents a focused review of the relevant physics Surveys available technology Analyzes scientific and technology trends Provides historical and policy context Igor Jovanovic is a Professor of Nuclear Engineering and Radiological Sciences at the University of Michigan and has previously also taught at Penn State University and Purdue University. He received his Ph.D. from University of California, Berkeley and worked as physicist at Lawrence Livermore National Laboratory. Dr. Jovanovic has made numerous contributions to the science and technology of radiation detection, as well as the radiation sources for use in active interrogation in nuclear security. He has taught numerous undergraduate and graduate courses in areas that include radiation detection, nuclear physics, and nuclear security. At University of Michigan Dr. Jovanovic is the director of Neutron Science Laboratory and is also associated with the Center for Ultrafast Optical Science. Anna Erickson is an Assistant Professor in the Nuclear and Radiological Engineering Program of the G.W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Previously, she was a postdoctoral researcher in the Advanced Detectors Group at Lawrence Livermore National Laboratory. Dr. Erickson received her PhD from Massachusetts Institute of Technology with a focus on radiation detection for active interrogation applications. Her research interests focus on nuclear non-proliferation including antineutrino analysis and non-traditional detector design and characterization. She teaches courses in advanced experimental detection for reactor and nuclear nonproliferation applications, radiation dosimetry and fast reactor analysis.

Book Improved Fission Neutron Data Base for Active Interrogation of Actinides

Download or read book Improved Fission Neutron Data Base for Active Interrogation of Actinides written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 - 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

Book Characterization of Fissile Material Using Low Energy Neutron Interrogation

Download or read book Characterization of Fissile Material Using Low Energy Neutron Interrogation written by Eduardo A. Padilla and published by . This book was released on 2007 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.)Results obtained validate this proof-of-concept, in that observed high energy neutron events increase significantly in the presence of gram-quantities of SNM. Further, attempts made to shield the SNM from active interrogation do not defeat the proposed system's ability to identify the presence of SNM. With a fully-functional proof-of-concept, further work towards developing a complete and deployable prototype active neutron interrogation system will serve to augment the ability of the United States to detect, deter and interdict illicit nuclear trafficking.

Book Recueil  Documentation sur Andr  e Pollier

Download or read book Recueil Documentation sur Andr e Pollier written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Active Neutron Technique for Detecting Attempted Special Nuclear Material Diversion

Download or read book Active Neutron Technique for Detecting Attempted Special Nuclear Material Diversion written by and published by . This book was released on 1979 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235U of 239Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds.

Book Active Interrogation of Highly Enriched Uranium

Download or read book Active Interrogation of Highly Enriched Uranium written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Active interrogation techniques provide reliable detection of highly enriched uranium (HEU) even when passive detection is difficult. We use 50-Hz pulsed beams of bremsstrahlung photons from a 10-MeV linac or 14-MeV neutrons from a neutron generator for interrogation, thus activating the HEU. Detection of neutrons between pulses is a positive indicator of the presence of fissionable material. We detect the neutrons with three neutron detector designs based on 3He tubes. This report shows examples of the responses in these three detectors, for unshielded and shielded kilogram quantities of HEU, in containers as large as cargo containers.

Book Industrial Accelerators and Their Applications

Download or read book Industrial Accelerators and Their Applications written by Robert Wray Hamm and published by World Scientific. This book was released on 2012 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams

Book Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

Download or read book Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

Book Radiation  Ionization  and Detection in Nuclear Medicine

Download or read book Radiation Ionization and Detection in Nuclear Medicine written by Tapan K. Gupta and published by Springer Science & Business Media. This book was released on 2013-03-20 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​ This book will serve as the definitive source of detailed information on radiation, ionization, and detection in nuclear medicine. It opens by considering fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding. Subsequent chapters cover the full range of relevant topics, including the detection and measurement of radiation exposure (with detailed information on mathematical modelling); medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

Book Measurement Technology for Safeguards and Materials Control

Download or read book Measurement Technology for Safeguards and Materials Control written by Thomas R. Canada and published by . This book was released on 1980 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Measurement technology for safeguards and materials control

Download or read book Measurement technology for safeguards and materials control written by American Nuclear Society and published by . This book was released on 1980 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Active Interrogation Measurements of Induced Fission Neutrons from Low Enriched Uranium

Download or read book Active Interrogation Measurements of Induced Fission Neutrons from Low Enriched Uranium written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample's mass and enrichment. Using MCNPX-PoliMi, a system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5? by 5? EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when used for active-interrogation simulations.

Book A Kinematically Beamed  Low Energy Pulsed Neutron Source for Active Interrogation

Download or read book A Kinematically Beamed Low Energy Pulsed Neutron Source for Active Interrogation written by P. Kerr and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n, n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

Book Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

Download or read book Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.