Download or read book GPU Computing Gems Emerald Edition written by and published by Elsevier. This book was released on 2011-01-13 with total page 889 pages. Available in PDF, EPUB and Kindle. Book excerpt: GPU Computing Gems Emerald Edition offers practical techniques in parallel computing using graphics processing units (GPUs) to enhance scientific research. The first volume in Morgan Kaufmann's Applications of GPU Computing Series, this book offers the latest insights and research in computer vision, electronic design automation, and emerging data-intensive applications. It also covers life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, video and image processing. This book is intended to help those who are facing the challenge of programming systems to effectively use GPUs to achieve efficiency and performance goals. It offers developers a window into diverse application areas, and the opportunity to gain insights from others' algorithm work that they may apply to their own projects. Readers will learn from the leading researchers in parallel programming, who have gathered their solutions and experience in one volume under the guidance of expert area editors. Each chapter is written to be accessible to researchers from other domains, allowing knowledge to cross-pollinate across the GPU spectrum. Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution. The insights and ideas as well as practical hands-on skills in the book can be immediately put to use. Computer programmers, software engineers, hardware engineers, and computer science students will find this volume a helpful resource. For useful source codes discussed throughout the book, the editors invite readers to the following website: ..." - Covers the breadth of industry from scientific simulation and electronic design automation to audio / video processing, medical imaging, computer vision, and more - Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution - Offers insights and ideas as well as practical "hands-on" skills you can immediately put to use
Download or read book Medical Image Reconstruction written by Gengsheng Zeng and published by Springer Science & Business Media. This book was released on 2010-12-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Download or read book X Ray CT written by Hiroyuki Toda and published by Springer Nature. This book was released on 2021-03-09 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
Download or read book Three Dimensional Digital Tomosynthesis written by Yulia Levakhina and published by Springer Vieweg. This book was released on 2014-05-06 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Yulia Levakhina gives an introduction to the major challenges of image reconstruction in Digital Tomosynthesis (DT), particularly to the connection of the reconstruction problem with the incompleteness of the DT dataset. The author discusses the factors which cause the formation of limited angle artifacts and proposes how to account for them in order to improve image quality and axial resolution of modern DT. The addressed methods include a weighted non-linear back projection scheme for algebraic reconstruction and novel dual-axis acquisition geometry. All discussed algorithms and methods are supplemented by detailed illustrations, hints for practical implementation, pseudo-code, simulation results and real patient case examples.
Download or read book Computed Tomography written by Thorsten M. Buzug and published by Springer Science & Business Media. This book was released on 2008-05-20 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of X-ray technology and the historical development of modern CT systems. The main focus of the book is a detailed derivation of reconstruction algorithms in 2D and modern 3D cone-beam systems. A thorough analysis of CT artifacts and a discussion of practical issues such as dose considerations give further insight into current CT systems. Although written mainly for graduate students, practitioners will also benefit from this book.
Download or read book Deep Learning and Parallel Computing Environment for Bioengineering Systems written by Arun Kumar Sangaiah and published by Academic Press. This book was released on 2019-07-26 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Download or read book Biomedical Image Processing written by Thomas Martin Deserno and published by Springer Science & Business Media. This book was released on 2011-03-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.
Download or read book CUDA by Example written by Jason Sanders and published by Addison-Wesley Professional. This book was released on 2010-07-19 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html
Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Download or read book Discrete Calculus written by Leo J. Grady and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.
Download or read book Advances in Multimedia Information Processing PCM 2005 written by Yo-Sung Ho and published by Springer. This book was released on 2005-10-19 with total page 1115 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are delighted to welcome readers to the proceedings of the 6th Pacific-Rim Conference on Multimedia (PCM). The first PCM was held in Sydney, Australia, in 2000. Since then, it has been hosted successfully by Beijing, China, in 2001, Hsinchu, Taiwan, in 2002, Singapore in 2003, and Tokyo, Japan, in 2004, and finally Jeju, one of the most beautiful and fantastic islands in Korea. This year, we accepted 181 papers out of 570 submissions including regular and special session papers. The acceptance rate of 32% indicates our commitment to ensuring a very high-quality conference. This would not be possible without the full support of the excellent Technical Committee and anonymous reviewers that provided timely and insightful reviews. We would therefore like to thank the Program Committee and all reviewers. The program of this year reflects the current interests of the PCM’s. The accepted papers cover a range of topics, including, all aspects of multimedia, both technical and artistic perspectives and both theoretical and practical issues. The PCM 2005 program covers tutorial sessions and plenary lectures as well as regular presentations in three tracks of oral sessions and a poster session in a single track. We have tried to expand the scope of PCM to the artistic papers which need not to be strictly technical.
Download or read book CUDA Programming written by Shane Cook and published by Newnes. This book was released on 2012-11-13 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'CUDA Programming' offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation.
Download or read book Guide to Medical Image Analysis written by Klaus D. Toennies and published by Springer Science & Business Media. This book was released on 2012-02-04 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive overview of medical image analysis. Practical in approach, the text is uniquely structured by potential applications. Features: presents learning objectives, exercises and concluding remarks in each chapter, in addition to a glossary of abbreviations; describes a range of common imaging techniques, reconstruction techniques and image artefacts; discusses the archival and transfer of images, including the HL7 and DICOM standards; presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing; examines various feature detection and segmentation techniques, together with methods for computing a registration or normalisation transformation; explores object detection, as well as classification based on segment attributes such as shape and appearance; reviews the validation of an analysis method; includes appendices on Markov random field optimization, variational calculus and principal component analysis.
Download or read book A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision written by Harald Köstler and published by . This book was released on 2008 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Clinical PET CT in Radiology written by Paul Shreve and published by Springer Science & Business Media. This book was released on 2010-12-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is specifically designed to meet the needs of practicing radiologists by offering a practical, unified approach to PET-CT. It details how to effectively apply PET-CT in patient management. Written by radiologists who fully appreciate and understand both PET and CT, the book details an integrated understanding of PET-CT as a combined modality. Clinical topics include PET-CT of thoracic malignancies, melanoma, and breast cancer. In addition, the book reinforces fundamental concepts, such as the role of imaging diagnosis in disease management.
Download or read book Computational Optimal Transport written by Gabriel Peyre and published by Foundations and Trends(r) in M. This book was released on 2019-02-12 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.