Download or read book Canonical Duality Theory written by David Yang Gao and published by Springer. This book was released on 2017-10-09 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization. With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in complex systems with real-world applications in non-convex analysis, non-monotone variational inequalities, integer programming, topology optimization, post-buckling of large deformed structures, etc. Researchers and graduate students will find explanation and potential applications in multidisciplinary fields.
Download or read book Nonlinear Optimization written by H. A. Eiselt and published by Springer Nature. This book was released on 2019-11-09 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to nonlinear programming, featuring a broad range of applications and solution methods in the field of continuous optimization. It begins with a summary of classical results on unconstrained optimization, followed by a wealth of applications from a diverse mix of fields, e.g. location analysis, traffic planning, and water quality management, to name but a few. In turn, the book presents a formal description of optimality conditions, followed by an in-depth discussion of the main solution techniques. Each method is formally described, and then fully solved using a numerical example.
Download or read book Integer Programming written by Laurence A. Wolsey and published by John Wiley & Sons. This book was released on 2020-10-20 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders’ decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders’ algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.
Download or read book Mathematical Programming Study written by and published by . This book was released on 1984 with total page 1274 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Mathematical Methods and High Performance Computing written by Vinai K. Singh and published by Springer. This book was released on 2019-02-14 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume of the conference will be of immense use to the researchers and academicians. In this conference, academicians, technocrats and researchers will get an opportunity to interact with eminent persons in the field of Applied Mathematics and Scientific Computing. The topics to be covered in this International Conference are comprehensive and will be adequate for developing and understanding about new developments and emerging trends in this area. High-Performance Computing (HPC) systems have gone through many changes during the past two decades in their architectural design to satisfy the increasingly large-scale scientific computing demand. Accurate, fast, and scalable performance models and simulation tools are essential for evaluating alternative architecture design decisions for the massive-scale computing systems. This conference recounts some of the influential work in modeling and simulation for HPC systems and applications, identifies some of the major challenges, and outlines future research directions which we believe are critical to the HPC modeling and simulation community.
Download or read book Duality Principles in Nonconvex Systems written by David Yang Gao and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.
Download or read book OPTIMIZATION AND OPERATIONS RESEARCH Volume II written by Ulrich Derigs and published by EOLSS Publications. This book was released on 2009-02-09 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization and Operations Research is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Optimization and Operations Research is organized into six different topics which represent the main scientific areas of the theme: 1. Fundamentals of Operations Research; 2. Advanced Deterministic Operations Research; 3. Optimization in Infinite Dimensions; 4. Game Theory; 5. Stochastic Operations Research; 6. Decision Analysis, which are then expanded into multiple subtopics, each as a chapter. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
Download or read book Network Flows and Monotropic Optimization written by R. Tyrell Rockafellar and published by Athena Scientific. This book was released on 1999-06-01 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and comprehensive treatment of network flow theory and monotropic optimization by one of the world's most renowned applied mathematicians. This classic textbook covers extensively the duality theory and the algorithms of linear and nonlinear network optimization optimization, and their significant extensions to monotropic programming (separable convex constrained optimization problems, including linear programs). It complements our other book on the subject of network optimization Network Optimization: Continuous and Discrete Models (Athena Scientific, 1998). Monotropic programming problems are characterized by a rich interplay between combinatorial structure and convexity properties. Rockafellar develops, for the first time, algorithms and a remarkably complete duality theory for these problems. Among its special features the book: (a) Treats in-depth the duality theory for linear and nonlinear network optimization (b) Uses a rigorous step-by-step approach to develop the principal network optimization algorithms (c) Covers the main algorithms for specialized network problems, such as max-flow, feasibility, assignment, and shortest path (d) Develops in detail the theory of monotropic programming, based on the author's highly acclaimed research (e) Contains many examples, illustrations, and exercises (f) Contains much new material not found in any other textbook
Download or read book Control and Modeling of Complex Systems written by Koichi Hashimoto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hidenori Kimura, renowned system and control theorist, turned 60 years of age in November, 2001. To celebrate this memorable occasion, his friends, collaborators, and former students gathered from all over the world and held a symposium in his honor on November 1 and 2, 2001, at the Sanjo Conference Hall at the University of Tokyo. Reflecting his current research interests, the symposium was entitled "Cybernetics in the 21st Century: Information and Complexity in Control Theory," and it drew nearly 150 attendees. There were twenty-five lectures, on which the present volume is based. Hidenori Kimura was born on November 3, 1941, in Tokyo, just prior to the outbreak of the Second World War. It is not hard to imagine, then, that his early days, like those of so many of his contemporaries, must have been difficult. Fortunately, the war ended in 1945, and his generation found itself thoroughly occupied with the rebuilding effort and with Japan's uphill journey in the last half-century. He entered the University of Tokyo in 1963, received a B. S. in 1965, an M. S. in 1967, and, in 1970, a Ph. D. degree for his dissertation "A Study of Differential Games. " After obtaining his doctorate, he joined the Department of Control En gineering at Osaka University as a research associate, and in 1973 he was promoted to an associate professor.
Download or read book Integer Programming and Related Areas written by R.v. Randow and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Download or read book Real Algebraic Geometry and Optimization written by Thorsten Theobald and published by American Mathematical Society. This book was released on 2024-04-17 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and user-friendly exploration of the tremendous recent developments that reveal the connections between real algebraic geometry and optimization, two subjects that were usually taught separately until the beginning of the 21st century. Real algebraic geometry studies the solutions of polynomial equations and polynomial inequalities over the real numbers. Real algebraic problems arise in many applications, including science and engineering, computer vision, robotics, and game theory. Optimization is concerned with minimizing or maximizing a given objective function over a feasible set. Presenting key ideas from classical and modern concepts in real algebraic geometry, this book develops related convex optimization techniques for polynomial optimization. The connection to optimization invites a computational view on real algebraic geometry and opens doors to applications. Intended as an introduction for students of mathematics or related fields at an advanced undergraduate or graduate level, this book serves as a valuable resource for researchers and practitioners. Each chapter is complemented by a collection of beneficial exercises, notes on references, and further reading. As a prerequisite, only some undergraduate algebra is required.
Download or read book Stanford Bulletin written by and published by . This book was released on 2006 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Generalized Concavity in Optimization and Economics written by Siegfried Schaible and published by New York ; London : Academic Press. This book was released on 1981 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear Programming written by Dimitri P. Bertsekas and published by Goodman Publishers. This book was released on 1999 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Duality in 19th and 20th Century Mathematical Thinking written by Ralf Krömer and published by Springer Nature. This book was released on 2024 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together scholars across various domains of the history and philosophy of mathematics, investigating duality as a multi-faceted phenomenon. Encompassing both systematic analysis and historical examination, the book endeavors to elucidate the status, roles, and dynamics of duality within the realms of 19th and 20th-century mathematics. Eschewing a priori notions, the contributors embrace the diverse interpretations and manifestations of duality, thus presenting a nuanced and comprehensive perspective on this intricate subject. Spanning a broad spectrum of mathematical topics and historical periods, the book uses detailed case studies to investigate the different forms in which duality appeared and still appears in mathematics, to study their respective histories, and to analyze interactions between the different forms of duality. The chapters inquire into questions such as the contextual occurrences of duality in mathematics, the influence of chosen forms of representation, the impact of investigations of duality on mathematical practices, and the historical interconnections among various instances of duality. Together, they aim to answer a core question: Is there such a thing as duality in mathematics, or are there just several things called by the same name and similar in some respect? What emerges is that duality can be considered as a basic structure of mathematical thinking, thereby opening new horizons for the research on the history and the philosophy of mathematics and the reflection on mathematics in general. The volume will appeal not only to experts in the discipline but also to advanced students of mathematics, history, and philosophy intrigued by the complexities of this captivating subject matter.
Download or read book Nondifferentiable and Two Level Mathematical Programming written by Kiyotaka Shimizu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations.