EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Survey of Models for Tumor Immune System Dynamics

Download or read book A Survey of Models for Tumor Immune System Dynamics written by John A. Adam and published by Springer Science & Business Media. This book was released on 2012-10-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.

Book A Survey of Models for Tumor Immune System Dynamics

Download or read book A Survey of Models for Tumor Immune System Dynamics written by John Adam and published by Birkhäuser. This book was released on 2012-09-27 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modeling and Immunology An enormous amount of human effort and economic resources has been directed in this century to the fight against cancer. The purpose, of course, has been to find strategies to overcome this hard, challenging and seemingly endless struggle. We can readily imagine that even greater efforts will be required in the next century. The hope is that ultimately humanity will be successful; success will have been achieved when it is possible to activate and control the immune system in its competition against neoplastic cells. Dealing with the above-mentioned problem requires the fullest pos sible cooperation among scientists working in different fields: biology, im munology, medicine, physics and, we believe, mathematics. Certainly, bi ologists and immunologists will make the greatest contribution to the re search. However, it is now increasingly recognized that mathematics and computer science may well able to make major contributions to such prob lems. We cannot expect mathematicians alone to solve fundamental prob lems in immunology and (in particular) cancer research, but valuable sup port, however modest, can be provided by mathematicians to the research aspirations of biologists and immunologists working in this field.

Book Mathematical Models of Tumor Immune System Dynamics

Download or read book Mathematical Models of Tumor Immune System Dynamics written by Amina Eladdadi and published by Springer. This book was released on 2014-11-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.

Book Mathematical Modeling and Computational Predictions in Oncoimmunology

Download or read book Mathematical Modeling and Computational Predictions in Oncoimmunology written by Vladimir A. Kuznetsov and published by Frontiers Media SA. This book was released on 2024-06-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex adaptive dynamic system that causes both local and systemic failures in the patient. Cancer is caused by a number of gain-of-function and loss-of-function events, that lead to cells proliferating without control by the host organism over time. In cancer, the immune system modulates cancer cell population heterogeneity and plays a crucial role in disease outcomes. The immune system itself also generates multiple clones of different cell types, with some clones proliferating quickly and maturing into effector cells. By creating regulatory signals and their networks, and generating effector cells and molecules, the immune system recognizes and kills abnormal cells. Anti-cancer immune mechanisms are realized as multi-layer, nonlinear cellular and molecular interactions. A number of factors determine the outcome of immune system-tumor interactions, including cancer-associated antigens, immune cells, and host organisms.

Book Mathematical and Computational Models of Cancer and the Immune System

Download or read book Mathematical and Computational Models of Cancer and the Immune System written by Diego Chowell-Puente and published by . This book was released on 2016 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of small subclones at the time of diagnosis. Because some of these rare subclones harbor pre-existing treatment-resistant mutations, they present a major challenge to precision medicine. Second, I study the question of self and non-self discrimination by the immune system, which is fundamental in the field in cancer immunology. By performing a quantitative analysis of the biochemical properties of thousands of MHC class I peptides, I find that hydrophobicity of T cell receptors contact residues is a hallmark of immunogenic epitopes. Based on these findings, I further develop a computational model to predict immunogenic epitopes which facilitate the development of T cell vaccines against pathogen and tumor antigens. Lastly, I study the effect of early detection in the context of Ebola. I develope a simple mathematical model calibrated to the transmission dynamics of Ebola virus in West Africa. My findings suggest that a strategy that focuses on early diagnosis of high-risk individuals, caregivers, and health-care workers at the pre-symptomatic stage, when combined with public health measures to improve the speed and efficacy of isolation of infectious individuals, can lead to rapid reductions in Ebola transmission.

Book Mathematics in Nature

    Book Details:
  • Author : John Adam
  • Publisher : Princeton University Press
  • Release : 2011-10-02
  • ISBN : 1400841011
  • Pages : 408 pages

Download or read book Mathematics in Nature written by John Adam and published by Princeton University Press. This book was released on 2011-10-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature. Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathematics can be used to formulate and solve puzzles observed in nature and to interpret the solutions. In the process, it teaches such topics as the art of estimation and the effects of scale, particularly what happens as things get bigger. Readers will develop an understanding of the symbiosis that exists between basic scientific principles and their mathematical expressions as well as a deeper appreciation for such natural phenomena as cloud formations, halos and glories, tree heights and leaf patterns, butterfly and moth wings, and even puddles and mud cracks. Developed out of a university course, this book makes an ideal supplemental text for courses in applied mathematics and mathematical modeling. It will also appeal to mathematics educators and enthusiasts at all levels, and is designed so that it can be dipped into at leisure.

Book Mathematical Modeling and the Control of Immune Processes with Application to Cancer

Download or read book Mathematical Modeling and the Control of Immune Processes with Application to Cancer written by Kwon Soon Lee and published by . This book was released on 1990 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A foundation for the control of tumors is presented, based upon the formulation of a realistic, knowledge-based mathematical model of the interaction between tumor cells and the immune system. The parametric control variables relevant to the latest experimental data, e.g., the sigmoidal dose-response relationship and Michaelis-Menten dynamics, are also considered. The model consists of 12 states, each composed of first-order, nonlinear differential equations based on cellular kinetics and each of which can be modeled bilinearly. In recent years a great deal of clinical progress has been achieved in the use of optimal controls to improve cancer therapy patient care. For this study, a cancer immunotherapy problem is investigated in which the aim is to minimize the tumor burden at the end of the treatment period, while penalizing excessive administration of interleukin-2 as a limit of toxicity. The optimal solution developed for this investigation is a mixture of an initially large dose of interleukin-2, followed by a gradually decreased dosage and a continuing infusion to maintain the tumor cell population at its allowable limit. Sensitivity analysis is applied to an investigation of the influences of system parameters. It has been found that the immune system is influenced greatly by several parameters such as macrophage level, tumor killing rate, tumor growth rate, and IL-2 level. The simulation results suggest that parametric control variables are important in the destruction of tumors and that the application of exacerbation theory is a good method of tumor control.

Book Multiscale Cancer Modeling

Download or read book Multiscale Cancer Modeling written by Thomas S. Deisboeck and published by CRC Press. This book was released on 2010-12-08 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat

Book Avian Immunology

    Book Details:
  • Author : Bernd Kaspers
  • Publisher : Academic Press
  • Release : 2012-12-02
  • ISBN : 0123972728
  • Pages : 456 pages

Download or read book Avian Immunology written by Bernd Kaspers and published by Academic Press. This book was released on 2012-12-02 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of Avian Immunology provides an up-to-date overview of the current knowledge of avian immunology. From the ontogeny of the avian immune system to practical application in vaccinology, the book encompasses all aspects of innate and adaptive immunity in chickens. In addition, chapters are devoted to the immunology of other commercially important species such as turkeys and ducks, and to ecoimmunology summarizing the knowledge of immune responses in free-living birds often in relation to reproductive success. The book contains a detailed description of the avian innate immune system, encompassing the mucosal, enteric, respiratory and reproductive systems. The diseases and disorders it covers include immunodepressive diseases and immune evasion, autoimmune diseases, and tumors of the immune system. Practical aspects of vaccination are examined as well. Extensive appendices summarize resources for scientists including cell lines, inbred chicken lines, cytokines, chemokines, and monoclonal antibodies. The world-wide importance of poultry protein for the human diet, as well as the threat of avian influenza pandemics like H5N1 and heavy reliance on vaccination to protect commercial flocks makes this book a vital resource. This book provides crucial information not only for poultry health professionals and avian biologists, but also for comparative and veterinary immunologists, graduate students and veterinary students with an interest in avian immunology. With contributions from 33 of the foremost international experts in the field, this book provides the most up-to-date review of avian immunology so far Contains a detailed description of the avian innate immune system reviewing constitutive barriers, chemical and cellular responses; it includes a comprehensive review of avian Toll-like receptors Contains a wide-ranging review of the "ecoimmunology" of free-living avian species, as applied to studies of population dynamics, and reviews methods and resources available for carrying out such research

Book The Dynamics of the Interactions Between Solid Tumors and Lymphocytes

Download or read book The Dynamics of the Interactions Between Solid Tumors and Lymphocytes written by Amy Hsiao-Chun Lin and published by . This book was released on 2001 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Models of the Adaptive Immune Response in a Novel Cancer Immunotherapy

Download or read book Mathematical Models of the Adaptive Immune Response in a Novel Cancer Immunotherapy written by Bryan A. Dawkins and published by . This book was released on 2016 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: The immune system is the first line of defense against cancer. The immune system regularly detects and destroys cancer cells. Despite this continuous protection, certain cancers are able to escape detection or destruction by the immune system. Research in recent decades has addressed the possibility of enlisting the help of the immune system to detect and destroy cancer cells. One compelling treatment uses a laser, an immune stimulant called glycated chitosan (GC), and a light absorbing dye called indocyanine green to convince the immune system to incite a systemic attack against both primary and metastatic tumors. In successful treatments, all tumors are completely destroyed and patients develop long-term immunity against tumors. While attempting to locate and destroy tumor cells, the cells of the immune system face competing pressures. On one hand are the immune cells that detect and attempt to control tumor cells (typically the target of the immune response is a foreign invader), and on the other hand are the immune cells that prevent the response from growing dangerously out of control. By policing certain immune cell populations, regulatory T cells (Tregs) play an important role in keeping the overall immune response under control. But, in doing so, these Tregs indirectly protect cancer cells. We describe post-treatment immune dynamics with mathematical models, and predictions of clinical treatment outcomes can be drawn from model predictions. Currently we emphasize the role of cytotoxic T cells and dendritic cells in the laser-initiated immune response, but we have also studied the roles of B cells and helper T cells. Our model is based on experimental studies with the dimethylbenza(a)nthracene-4 (DMBA-4) metastatic mammary tumor line in the rat animal model. We have used our model to determine clinical outcomes based on the effects of two key treatment factors: the dose and role of GC, and the manipulation of Treg activity. Treatment outcome is improved by the pro-immune stimulatory properties of GC and worsened by the proposed pro-tumor activity of Tregs. The results from our studies indicate potential treatment designs that could be used to improve treatment outcome or highlight additional areas that should be targeted for future experimentation with animal models.

Book Chimpanzees in Biomedical and Behavioral Research

Download or read book Chimpanzees in Biomedical and Behavioral Research written by National Research Council and published by National Academies Press. This book was released on 2011-12-05 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, experiments using chimpanzees have been instrumental in advancing scientific knowledge and have led to new medicines to prevent life-threatening and debilitating diseases. However, recent advances in alternate research tools have rendered chimpanzees largely unnecessary as research subjects. The Institute of Medicine, in collaboration with the National Research Council, conducted an in-depth analysis of the scientific necessity for chimpanzees in NIH-funded biomedical and behavioral research. The committee concludes that while the chimpanzee has been a valuable animal model in the past, most current biomedical research use of chimpanzees is not necessary, though noted that it is impossible to predict whether research on emerging or new diseases may necessitate chimpanzees in the future.

Book Selected Topics in Cancer Modeling

Download or read book Selected Topics in Cancer Modeling written by Nicola Bellomo and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.

Book Recent Advances in Intelligent Information Systems and Applied Mathematics

Download or read book Recent Advances in Intelligent Information Systems and Applied Mathematics written by Oscar Castillo and published by Springer Nature. This book was released on 2020-01-31 with total page 903 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest advances in intelligent techniques such as fuzzy logic, neural networks, and optimization algorithms, and their relevance in building intelligent information systems in combination with applied mathematics. The authors also outline the applications of these systems in areas like intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. By sharing fresh ideas and identifying new targets/problems it offers young researchers and students new directions for their future research. The book is intended for readers from mathematics and computer science, in particular professors and students working on theory and applications of intelligent systems for real-world applications.

Book A Mathematical Model for Single Cell Cancer   Immune System Dynamics

Download or read book A Mathematical Model for Single Cell Cancer Immune System Dynamics written by Mikhail Kolev and published by . This book was released on 2002 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Philosophy of Cancer

    Book Details:
  • Author : Marta Bertolaso
  • Publisher : Springer
  • Release : 2016-08-24
  • ISBN : 9402408657
  • Pages : 200 pages

Download or read book Philosophy of Cancer written by Marta Bertolaso and published by Springer. This book was released on 2016-08-24 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 1970s, the origin of cancer is being explored from the point of view of the Somatic Mutation Theory (SMT), focusing on genetic mutations and clonal expansion of somatic cells. As cancer research expanded in several directions, the dominant focus on cells remained steady, but the classes of genes and the kinds of extra-genetic factors that were shown to have causal relevance in the onset of cancer multiplied. The wild heterogeneity of cancer-related mutations and phenotypes, along with the increasing complication of models, led to an oscillation between the hectic search of ‘the’ few key factors that cause cancer and the discouragement in face of a seeming ‘endless complexity’. To tame this complexity, cancer research started to avail itself of the tools that were being developed by Systems Biology. At the same time, anti-reductionist voices began claiming that cancer research was stuck in a sterile research paradigm. This alternative discourse even gave birth to an alternative theory: the Tissue Organization Field Theory (TOFT). A deeper philosophical analysis shows limits and possibilities of reductionist and anti-reductionist positions and of their polarization. This book demonstrates that a radical philosophical reflection is necessary to drive cancer research out of its impasses. At the very least, this will be a reflection on the assumptions of different kinds of cancer research, on the implications of what cancer research has been discovering over 40 years and more, on a view of scientific practice that is most able to make sense of the cognitive and social conflicts that are seen in the scientific community (and in its results), and, finally, on the nature of living entities with which we entertain this fascinating epistemological dance that we call scientific research. The proposed Dynamic and Relational View of carcinogenesis is a starting point in all these directions.

Book Introduction to Mathematical Oncology

Download or read book Introduction to Mathematical Oncology written by Yang Kuang and published by CRC Press. This book was released on 2016-04-05 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.