EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Duality in Stochastic Linear and Dynamic Programming

Download or read book Duality in Stochastic Linear and Dynamic Programming written by Willem K. Klein Haneveld and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Linear Programming

Download or read book Stochastic Linear Programming written by Peter Kall and published by Springer Science & Business Media. This book was released on 2005 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENIDO: Basic - Linear Programming Prerequisites - Nonlinear Programming Prerequisites - Single-Stage SLP models - Models involving probability functions - Quantile functions, Value at Risk - Models based on expectation - Models built with deviation measures - Modeling risk and opportunity - Risk measures - Multi-stage SLP models - The general SLP with recourse - The two-stage SLP - The multi-stage SLP - Algorithms - Single-stage models with separate probability functions - Single-stage models with joint probability functions - Single-stage models based on expectation - Single-stage models involving VaR - Single-stage models with deviation measures - Two-stage recourse models - Multistage recourse models - Modeling systems for SLP.

Book Introduction to Stochastic Programming

Download or read book Introduction to Stochastic Programming written by John R. Birge and published by Springer Science & Business Media. This book was released on 2011-06-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. In this extensively updated new edition there is more material on methods and examples including several new approaches for discrete variables, new results on risk measures in modeling and Monte Carlo sampling methods, a new chapter on relationships to other methods including approximate dynamic programming, robust optimization and online methods. The book is highly illustrated with chapter summaries and many examples and exercises. Students, researchers and practitioners in operations research and the optimization area will find it particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make 'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998)

Book Stochastic Programming

    Book Details:
  • Author : Gerd Infanger
  • Publisher : Springer Science & Business Media
  • Release : 2010-11-10
  • ISBN : 1441916423
  • Pages : 373 pages

Download or read book Stochastic Programming written by Gerd Infanger and published by Springer Science & Business Media. This book was released on 2010-11-10 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface... The preparation of this book started in 2004, when George B. Dantzig and I, following a long-standing invitation by Fred Hillier to contribute a volume to his International Series in Operations Research and Management Science, decided finally to go ahead with editing a volume on stochastic programming. The field of stochastic programming (also referred to as optimization under uncertainty or planning under uncertainty) had advanced significantly in the last two decades, both theoretically and in practice. George Dantzig and I felt that it would be valuable to showcase some of these advances and to present what one might call the state-of- the-art of the field to a broader audience. We invited researchers whom we considered to be leading experts in various specialties of the field, including a few representatives of promising developments in the making, to write a chapter for the volume. Unfortunately, to the great loss of all of us, George Dantzig passed away on May 13, 2005. Encouraged by many colleagues, I decided to continue with the book and edit it as a volume dedicated to George Dantzig. Management Science published in 2005 a special volume featuring the “Ten most Influential Papers of the first 50 Years of Management Science.” George Dantzig’s original 1955 stochastic programming paper, “Linear Programming under Uncertainty,” was featured among these ten. Hearing about this, George Dantzig suggested that his 1955 paper be the first chapter of this book. The vision expressed in that paper gives an important scientific and historical perspective to the book. Gerd Infanger

Book Handbooks in Operations Research and Management Science  Financial Engineering

Download or read book Handbooks in Operations Research and Management Science Financial Engineering written by John R. Birge and published by Elsevier. This book was released on 2007-11-16 with total page 1026 pages. Available in PDF, EPUB and Kindle. Book excerpt: The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.

Book Comprehensive Dissertation Index  1861 1972  Business and economics

Download or read book Comprehensive Dissertation Index 1861 1972 Business and economics written by Xerox University Microfilms and published by . This book was released on 1973 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stochastic Optimization Methods in Finance and Energy

Download or read book Stochastic Optimization Methods in Finance and Energy written by Marida Bertocchi and published by Springer Science & Business Media. This book was released on 2011-09-15 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of contributions dedicated to applied problems in the financial and energy sectors that have been formulated and solved in a stochastic optimization framework. The invited authors represent a group of scientists and practitioners, who cooperated in recent years to facilitate the growing penetration of stochastic programming techniques in real-world applications, inducing a significant advance over a large spectrum of complex decision problems. After the recent widespread liberalization of the energy sector in Europe and the unprecedented growth of energy prices in international commodity markets, we have witnessed a significant convergence of strategic decision problems in the energy and financial sectors. This has often resulted in common open issues and has induced a remarkable effort by the industrial and scientific communities to facilitate the adoption of advanced analytical and decision tools. The main concerns of the financial community over the last decade have suddenly penetrated the energy sector inducing a remarkable scientific and practical effort to address previously unforeseeable management problems. Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Markets Strategies aims to include in a unified framework for the first time an extensive set of contributions related to real-world applied problems in finance and energy, leading to a common methodological approach and in many cases having similar underlying economic and financial implications. Part 1 of the book presents 6 chapters related to financial applications; Part 2 presents 7 chapters on energy applications; and Part 3 presents 5 chapters devoted to specific theoretical and computational issues.

Book The New Palgrave Dictionary of Economics

Download or read book The New Palgrave Dictionary of Economics written by and published by Springer. This book was released on 2016-05-18 with total page 7493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.

Book Comprehensive Dissertation Index

Download or read book Comprehensive Dissertation Index written by and published by . This book was released on 1973 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1968 with total page 1452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 1971 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Optimization

    Book Details:
  • Author : Aharon Ben-Tal
  • Publisher : Princeton University Press
  • Release : 2009-08-10
  • ISBN : 1400831059
  • Pages : 565 pages

Download or read book Robust Optimization written by Aharon Ben-Tal and published by Princeton University Press. This book was released on 2009-08-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Book Linear and Mixed Integer Programming for Portfolio Optimization

Download or read book Linear and Mixed Integer Programming for Portfolio Optimization written by Renata Mansini and published by Springer. This book was released on 2015-06-10 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.

Book Generalized Bounds for Convex Multistage Stochastic Programs

Download or read book Generalized Bounds for Convex Multistage Stochastic Programs written by Daniel Kuhn and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1 am particularly indebted to Prof. Dr. Karl Frauendorfer for - pervising my work. I am grateful for his kind support in many respects and the generous freedom I received to pursue my own ideas in research. My gratitude also goes to Prof. Dr. Georg Pflug, who agreed to co-chair the dissertation committee. With pleasure I express my appreciation for his encouragement and continuing interest in my work.

Book Multistage Stochastic Optimization

Download or read book Multistage Stochastic Optimization written by Georg Ch. Pflug and published by Springer. This book was released on 2014-11-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.

Book Optimal Operation of Integrated Energy Systems Under Uncertainties

Download or read book Optimal Operation of Integrated Energy Systems Under Uncertainties written by Bo Yang and published by Elsevier. This book was released on 2023-09-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Operation of Integrated Energy Systems Under Uncertainties: Distributionally Robust and Stochastic Models discusses new solutions to the rapidly emerging concerns surrounding energy usage and environmental deterioration. Integrated energy systems (IESs) are acknowledged to be a promising approach to increasing the efficiency of energy utilization by exploiting complementary (alternative) energy sources and storages. IESs show favorable performance for improving the penetration of renewable energy sources (RESs) and accelerating low-carbon transition. However, as more renewables penetrate the energy system, their highly uncertain characteristics challenge the system, with significant impacts on safety and economic issues. To this end, this book provides systematic methods to address the aggravating uncertainties in IESs from two aspects: distributionally robust optimization and online operation. - Presents energy scheduling, considering power, gas, and carbon markets concurrently based on distributionally robust optimization methods - Helps readers design day-ahead scheduling schemes, considering both decision-dependent uncertainties and decision-independent uncertainties for IES - Covers online scheduling and energy auctions by stochastic optimization methods - Includes analytic results given to measure the performance gap between real performance and ideal performance

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.