EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Statistical Approach to Neural Networks for Pattern Recognition

Download or read book A Statistical Approach to Neural Networks for Pattern Recognition written by Robert A. Dunne and published by Wiley-Interscience. This book was released on 2007-07-16 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models, in a language that is familiar to practicing statisticians. Questions arise when statisticians are first confronted with such a model, and this book's aim is to provide thorough answers.

Book Neural Networks for Pattern Recognition

Download or read book Neural Networks for Pattern Recognition written by Christopher M. Bishop and published by Oxford University Press. This book was released on 1995-11-23 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.

Book Pattern Recognition and Neural Networks

Download or read book Pattern Recognition and Neural Networks written by Brian D. Ripley and published by Cambridge University Press. This book was released on 2007 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.

Book A Statistical Approach to Neural Networks for Pattern Recognition

Download or read book A Statistical Approach to Neural Networks for Pattern Recognition written by Robert A. Dunne and published by John Wiley & Sons. This book was released on 2007-07-20 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible and up-to-date treatment featuring the connection between neural networks and statistics A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as: How robust is the model to outliers? Could the model be made more robust? Which points will have a high leverage? What are good starting values for the fitting algorithm? Thorough answers to these questions and many more are included, as well as worked examples and selected problems for the reader. Discussions on the use of MLP models with spatial and spectral data are also included. Further treatment of highly important principal aspects of the MLP are provided, such as the robustness of the model in the event of outlying or atypical data; the influence and sensitivity curves of the MLP; why the MLP is a fairly robust model; and modifications to make the MLP more robust. The author also provides clarification of several misconceptions that are prevalent in existing neural network literature. Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering.

Book Statistical and Neural Classifiers

Download or read book Statistical and Neural Classifiers written by Sarunas Raudys and published by Springer Science & Business Media. This book was released on 2001-01-29 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classification of patterns is an important area of research which is central to all pattern recognition fields, including speech, image, robotics, and data analysis. Neural networks have been used successfully in a number of these fields, but so far their application has been based on a 'black box approach' with no real understanding of how they work. In this book, Sarunas Raudys - an internationally respected researcher in the area - provides an excellent mathematical and applied introduction to how neural network classifiers work and how they should be used.. .

Book Pattern Classification

Download or read book Pattern Classification written by Jgen Schmann and published by Wiley-Interscience. This book was released on 1996-03-15 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: PATTERN CLASSIFICATION a unified view of statistical and neural approaches The product of years of research and practical experience in pattern classification, this book offers a theory-based engineering perspective on neural networks and statistical pattern classification. Pattern Classification sheds new light on the relationship between seemingly unrelated approaches to pattern recognition, including statistical methods, polynomial regression, multilayer perceptron, and radial basis functions. Important topics such as feature selection, reject criteria, classifier performance measurement, and classifier combinations are fully covered, as well as material on techniques that, until now, would have required an extensive literature search to locate. A full program of illustrations, graphs, and examples helps make the operations and general properties of different classification approaches intuitively understandable. Offering a lucid presentation of complex applications and their algorithms, Pattern Classification is an invaluable resource for researchers, engineers, and graduate students in this rapidly developing field.

Book Statistical Pattern Recognition

Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a

Book Pattern Recognition and Machine Learning

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Book Artificial Neural Networks and Statistical Pattern Recognition

Download or read book Artificial Neural Networks and Statistical Pattern Recognition written by I.K. Sethi and published by Elsevier. This book was released on 2014-06-28 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the growing complexity of pattern recognition related problems being solved using Artificial Neural Networks, many ANN researchers are grappling with design issues such as the size of the network, the number of training patterns, and performance assessment and bounds. These researchers are continually rediscovering that many learning procedures lack the scaling property; the procedures simply fail, or yield unsatisfactory results when applied to problems of bigger size. Phenomena like these are very familiar to researchers in statistical pattern recognition (SPR), where the curse of dimensionality is a well-known dilemma. Issues related to the training and test sample sizes, feature space dimensionality, and the discriminatory power of different classifier types have all been extensively studied in the SPR literature. It appears however that many ANN researchers looking at pattern recognition problems are not aware of the ties between their field and SPR, and are therefore unable to successfully exploit work that has already been done in SPR. Similarly, many pattern recognition and computer vision researchers do not realize the potential of the ANN approach to solve problems such as feature extraction, segmentation, and object recognition. The present volume is designed as a contribution to the greater interaction between the ANN and SPR research communities.

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Book Bayesian Nonparametrics via Neural Networks

Download or read book Bayesian Nonparametrics via Neural Networks written by Herbert K. H. Lee and published by SIAM. This book was released on 2004-01-01 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Nonparametrics via Neural Networks is the first book to focus on neural networks in the context of nonparametric regression and classification, working within the Bayesian paradigm. Its goal is to demystify neural networks, putting them firmly in a statistical context rather than treating them as a black box. This approach is in contrast to existing books, which tend to treat neural networks as a machine learning algorithm instead of a statistical model. Once this underlying statistical model is recognized, other standard statistical techniques can be applied to improve the model. The Bayesian approach allows better accounting for uncertainty. This book covers uncertainty in model choice and methods to deal with this issue, exploring a number of ideas from statistics and machine learning. A detailed discussion on the choice of prior and new noninformative priors is included, along with a substantial literature review. Written for statisticians using statistical terminology, Bayesian Nonparametrics via Neural Networks will lead statisticians to an increased understanding of the neural network model and its applicability to real-world problems.

Book Information Security and Assurance

Download or read book Information Security and Assurance written by Samir Kumar Bandyopadhyay and published by Springer Science & Business Media. This book was released on 2010-06-09 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Science and Technology, Advanced Communication and Networking, Information Security and Assurance, Ubiquitous Computing and Multimedia Appli- tions are conferences that attract many academic and industry professionals. The goal of these co-located conferences is to bring together researchers from academia and industry as well as practitioners to share ideas, problems and solutions relating to the multifaceted aspects of advanced science and technology, advanced communication and networking, information security and assurance, ubiquitous computing and m- timedia applications. This co-located event included the following conferences: AST 2010 (The second International Conference on Advanced Science and Technology), ACN 2010 (The second International Conference on Advanced Communication and Networking), ISA 2010 (The 4th International Conference on Information Security and Assurance) and UCMA 2010 (The 2010 International Conference on Ubiquitous Computing and Multimedia Applications). We would like to express our gratitude to all of the authors of submitted papers and to all attendees, for their contributions and participation. We believe in the need for continuing this undertaking in the future. We acknowledge the great effort of all the Chairs and the members of advisory boards and Program Committees of the above-listed events, who selected 15% of over 1,000 submissions, following a rigorous peer-review process. Special thanks go to SERSC (Science & Engineering Research Support soCiety) for supporting these - located conferences.

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book A Probabilistic Theory of Pattern Recognition

Download or read book A Probabilistic Theory of Pattern Recognition written by Luc Devroye and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.

Book Neural Networks for Applied Sciences and Engineering

Download or read book Neural Networks for Applied Sciences and Engineering written by Sandhya Samarasinghe and published by CRC Press. This book was released on 2016-04-19 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in

Book Adaptive Pattern Recognition and Neural Networks

Download or read book Adaptive Pattern Recognition and Neural Networks written by Yoh-Han Pao and published by Addison Wesley Publishing Company. This book was released on 1989 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introduction to the basic concepts of pattern recognition, incorporating recent advances from AI, neurobiology, engineering, and other disciplines. Treats specifically the implementation of adaptive pattern recognition to neural networks. Annotation copyright Book News, Inc. Portland, Or.

Book PATTERN RECOGNITION  STATISTICAL  STRUCTURAL AND NEURAL APPROACHES

Download or read book PATTERN RECOGNITION STATISTICAL STRUCTURAL AND NEURAL APPROACHES written by Schalkoff and published by John Wiley & Sons. This book was released on 2007-09 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: About The Book: This book explores the heart of pattern recognition concepts, methods and applications using statistical, syntactic and neural approaches. Divided into four sections, it clearly demonstrates the similarities and differences among the three approaches. The second part deals with the statistical pattern recognition approach, starting with a simple example and finishing with unsupervised learning through clustering. Section three discusses the syntactic approach and explores such topics as the capabilities of string grammars and parsing; higher dimensional representations and graphical approaches. Part four presents an excellent overview of the emerging neural approach including an examination of pattern associations and feedforward nets. Along with examples, each chapter provides the reader with pertinent literature for a more in-depth study of specific topics.