EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Simulation Study of Injected CO2 Migration in the Faulted Reservoir

Download or read book A Simulation Study of Injected CO2 Migration in the Faulted Reservoir written by Kyung Won Chang and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding the Plume Dynamics and Risk Associated with CO2 Injection in Deep Saline Aquifers

Download or read book Understanding the Plume Dynamics and Risk Associated with CO2 Injection in Deep Saline Aquifers written by Abhishek Kumar Gupta and published by . This book was released on 2011 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological sequestration of CO2 in deep saline reservoirs is one of the ways to reduce its continuous emission into the atmosphere to mitigate the greenhouse effect. The effectiveness of any CO2 sequestration operation depends on pore volume and the sequestration efficiency of the reservoir. Sequestration efficiency is defined here as the maximum storage with minimum risk of leakage to the overlying formations or to the surface. This can be characterized using three risk parameters i) the time the plume takes to reach the top seal; ii) maximum lateral extent of the plume and iii) the percentage of mobile CO2 present at any time. The selection among prospective saline reservoirs can be expedited by developing some semi-analytical correlations for these risk parameters which can be used in place of reservoir simulation study for each and every saline reservoir. Such correlations can reduce the cost and time for commissioning a geological site for CO2 sequestration. To develop such correlations, a database has been created from a large number of compositional reservoir simulations for different elementary reservoir parameters including porosity, permeability, permeability anisotropy, reservoir depth, thickness, dip, perforation interval and constant pressure far boundary condition. This database is used to formulate different correlations that relate the sequestration efficiency to reservoir properties and operating conditions. The various elementary reservoir parameters are grouped together to generate different variants of gravity number used in the correlations. We update a previously reported correlation for time to hit the top seal and develop new correlations for other two parameters using the newly created database. A correlation for percentage of trapped CO2 is also developed using a previously created similar database. We find that normalizing all risk parameters with their respective characteristic values yields reasonable correlations with different variants of gravity number. All correlations confirm the physics behind plume movement in a reservoir. The correlations reproduce almost all simulation results within a factor of two, and this is adequate for rapid ranking or screening of prospective storage reservoirs. CO2 injection in saline reservoirs on the scale of tens of millions of tonnes may result in fracturing, fault activation and leakage of brine along conductive pathways. Critical contour of overpressure (CoP) is a convenient proxy to determine the risk associated with pressure buildup at different location and time in the reservoir. The location of this contour varies depending on the target aquifer properties (porosity, permeability etc.) and the geology (presence and conductivity of faults). The CoP location also depends on relative permeability, and we extend the three-region injection model to derive analytical expressions for a specific CoP as a function of time. We consider two boundary conditions at the aquifer drainage radius, constant pressure or an infinite aquifer. The model provides a quick tool for estimating pressure profiles. Such tools are valuable for screening and ranking sequestration targets. Relative permeability curves measured on samples from seven potential storage formations are used to illustrate the effect on the CoPs. In the case of a constant pressure boundary and constant rate injection scenario, the CoP for small overpressures is time-invariant and independent of relative permeability. Depending on the relative values of overall mobilities of two-phase region and of brine region, the risk due to a critical CoP which lies in the two-phase region can either increase or decrease with time. In contrast, the risk due to a CoP in the drying region always decreases with time. The assumption of constant pressure boundaries is optimistic in the sense that CoPs extend the least distance from the injection well. We extend the analytical model to infinite-acting aquifers to get a more widely applicable estimate of risk. An analytical expression for pressure profile is developed by adapting water influx models from traditional reservoir engineering to the "three-region" saturation distribution. For infinite-acting boundary condition, the CoP trends depend on same factors as in the constant pressure case, and also depend upon the rate of change of aquifer boundary pressure with time. Commercial reservoir simulators are used to verify the analytical model for the constant pressure boundary condition. The CoP trends from the analytical solution and simulation results show a good match. To achieve safe and secure CO2 storage in underground reservoirs several state and national government agencies are working to develop regulatory frameworks to estimate various risks associated with CO2 injection in saline aquifers. Certification Framework (CF), developed by Oldenburg et al (2007) is a similar kind of regulatory approach to certify the safety and effectiveness of geologic carbon sequestration sites. CF is a simple risk assessment approach for evaluating CO2 and brine leakage risk associated only with subsurface processes and excludes compression, transportation, and injection-well leakage risk. Certification framework is applied to several reservoirs in different geologic settings. These include In Salah CO2 storage project Krechba, Algeria, Aquistore CO2 storage project Saskatchewan, Canada and WESTCARB CO2 storage project, Solano County, California. Compositional reservoir simulations in CMG-GEM are performed for CO2 injection in each storage reservoir to predict pressure build up risk and CO2 leakage risk. CO2 leakage risk is also estimated using the catalog of pre-computed reservoir simulation results. Post combustion CO2 capture is required to restrict the continuous increase of carbon content in the atmosphere. Coal fired electricity generating stations are the dominant players contributing to the continuous emissions of CO2 into the atmosphere. U.S. government has planned to install post combustion CO2 capture facility in many coal fired power plants including W.A. Parish electricity generating station in south Texas. Installing a CO2 capture facility in a coal fired power plant increases the capital cost of installation and operating cost to regenerate the turbine solvent (steam or natural gas) to maintain the stripper power requirement. If a coal-fired power plant with CO2 capture is situated over a viable source for geothermal heat, it may be desirable to use this heat source in the stripper. Geothermal brine can be used to replace steam or natural gas which in turn reduces the operating cost of the CO2 capture facility. High temperature brine can be produced from the underground geothermal brine reservoir and can be injected back to the reservoir after the heat from the hot brine is extracted. This will maintain the reservoir pressure and provide a long-term supply of hot brine to the stripper. Simulations were performed to supply CO2 capture facility equivalent to 60 MWe electric unit to capture 90% of the incoming CO2 in WA Parish electricity generating station. A reservoir simulation study in CMG-GEM is performed to evaluate the feasibility to recycle the required geothermal brine for 30 years time. This pilot study is scaled up to 15 times of the original capacity to generate 900 MWe stripping system to capture CO2 at surface.

Book Data Driven Analytics for the Geological Storage of CO2

Download or read book Data Driven Analytics for the Geological Storage of CO2 written by Shahab Mohaghegh and published by CRC Press. This book was released on 2018-05-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Book CO2 Injection in the Network of Carbonate Fractures

Download or read book CO2 Injection in the Network of Carbonate Fractures written by J. Carlos de Dios and published by Springer Nature. This book was released on 2020-12-17 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents guidelines for the design, operation and monitoring of CO2 injection in fractured carbonates, with low permeability in the rock matrix, for geological storage in permanent trapping. CO2 migration is dominated by fractures in formations where the hydrodynamic and geochemical effects induced by the injection play a key role influencing the reservoir behavior. CO2 injection in these rocks shows specific characteristics that are different to injection in porous media, as the results from several research studies worldwide reveal. All aspects of a project of this type are discussed in this text, from the drilling to the injection, as well as support works like well logging, laboratory and field tests, modeling, and risk assessment. Examples are provided, lesson learned is detailed, and conclusions are drawn. This work is derived from the experience of international research teams and particularly from that gained during the design, construction and operation of Hontomín Technology Development Plant. Hontomín research pilot is currently the only active onshore injection site in the European Union, operated by Fundación Ciudad de la Energía-CIUDEN F.S.P. and recognized by the European Parliament as a key test facility. The authors provide guidelines and tools to enable readers to find solutions to their problems. The book covers activities relevant to a wide range of practitioners involved in reservoir exploration, modeling, site operation and monitoring. Fluid injection in fractured media shows specific features that are different than injection in porous media, influencing the reservoir behavior and defining conditions for safe and efficient operation. Therefore, this book is also useful to professionals working on oil & gas, hydrogeology and geothermal projects, and in general for those whose work is related to activities using fluid injection in the ground.

Book Petrophysical Modeling and Simulation Study of Geological CO2 Sequestration

Download or read book Petrophysical Modeling and Simulation Study of Geological CO2 Sequestration written by Xianhui Kong and published by . This book was released on 2014 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global warming and greenhouse gas (GHG) emissions have recently become the significant focus of engineering research. The geological sequestration of greenhouse gases such as carbon dioxide (CO2) is one approach that has been proposed to reduce the greenhouse gas emissions and slow down global warming. Geological sequestration involves the injection of produced CO2 into subsurface formations and trapping the gas through many geological mechanisms, such as structural trapping, capillary trapping, dissolution, and mineralization. While some progress in our understanding of fluid flow in porous media has been made, many petrophysical phenomena, such as multi-phase flow, capillarity, geochemical reactions, geomechanical effect, etc., that occur during geological CO2 sequestration remain inadequately studied and pose a challenge for continued study. It is critical to continue to research on these important issues. Numerical simulators are essential tools to develop a better understanding of the geologic characteristics of brine reservoirs and to build support for future CO2 storage projects. Modeling CO2 injection requires the implementation of multiphase flow model and an Equation of State (EOS) module to compute the dissolution of CO2 in brine and vice versa. In this study, we used the Integrated Parallel Accurate Reservoir Simulator (IPARS) developed at the Center for Subsurface Modeling at The University of Texas at Austin to model the injection process and storage of CO2 in saline aquifers. We developed and implemented new petrophysical models in IPARS, and applied these models to study the process of CO2 sequestration. The research presented in this dissertation is divided into three parts. The first part of the dissertation discusses petrophysical and computational models for the mechanical, geological, petrophysical phenomena occurring during CO2 injection and sequestration. The effectiveness of CO2 storage in saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental data reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on IFT is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in the subsurface is crucial to design future storage projects for long-term, safe containment. We have developed numerical models for CO2 trapping and migration in aquifers, including a compositional flow model, a relative permeability model, a capillary model, an interfacial tension model, and others. The heterogeneities in porosity and permeability are also coupled to the petrophysical models. We have developed and implemented a general relative permeability model that combines the effects of pressure gradient, buoyancy, and capillary pressure in a compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed. The variation of residual saturation is modeled based on interfacial tension and trapping number, and a hysteretic trapping model is also presented. The second part of this dissertation is a model validation and sensitivity study using coreflood simulation data derived from laboratory study. The motivation of this study is to gain confidence in the results of the numerical simulator by validating the models and the numerical accuracies using laboratory and field pilot scale results. Published steady state, core-scale CO2/brine displacement results were selected as a reference basis for our numerical study. High-resolution compositional simulations of brine displacement with supercritical CO2 are presented using IPARS. A three-dimensional (3D) numerical model of the Berea sandstone core was constructed using heterogeneous permeability and porosity distributions based on geostatistical data. The measured capillary pressure curve was scaled using the Leverett J-function to include local heterogeneity in the sub-core scale. Simulation results indicate that accurate representation of capillary pressure at sub-core scales is critical. Water drying and the shift in relative permeability had a significant impact on the final CO2 distribution along the core. This study provided insights into the role of heterogeneity in the final CO2 distribution, where a slight variation in porosity gives rise to a large variation in the CO2 saturation distribution. The third part of this study is a simulation study using IPARS for Cranfield pilot CO2 sequestration field test, conducted by the Bureau of Economic Geology (BEG) at The University of Texas at Austin. In this CO2 sequestration project, a total of approximately 2.5 million tons supercritical CO2 was injected into a deep saline aquifer about ~10000 ft deep over 2 years, beginning December 1st 2009. In this chapter, we use the simulation capabilities of IPARS to numerically model the CO2 injection process in Cranfield. We conducted a corresponding history-matching study and got good agreement with field observation. Extensive sensitivity studies were also conducted for CO2 trapping, fluid phase behavior, relative permeability, wettability, gravity and buoyancy, and capillary effects on sequestration. Simulation results are consistent with the observed CO2 breakthrough time at the first observation well. Numerical results are also consistent with bottomhole injection flowing pressure for the first 350 days before the rate increase. The abnormal pressure response with rate increase on day 350 indicates possible geomechanical issues, which can be represented in simulation using an induced fracture near the injection well. The recorded injection well bottomhole pressure data were successfully matched after modeling the fracture in the simulation model. Results also illustrate the importance of using accurate trapping models to predict CO2 immobilization behavior. The impact of CO2/brine relative permeability curves and trapping model on bottom-hole injection pressure is also demonstrated.

Book PVT and Phase Behaviour Of Petroleum Reservoir Fluids

Download or read book PVT and Phase Behaviour Of Petroleum Reservoir Fluids written by Ali Danesh and published by Elsevier. This book was released on 1998-05-07 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on PVT and Phase Behaviour Of Petroleum Reservoir Fluids is volume 47 in the Developments in Petroleum Science series. The chapters in the book are: Phase Behaviour Fundamentals, PVT Tests and Correlations, Phase Equilibria, Equations of State, Phase Behaviour Calculations, Fluid Characterisation, Gas Injection, Interfacial Tension, and Application in Reservoir Simulation.

Book Plume Migration and Pressure Evolution Analyses for Recommendations in Offshore CO2 Storage Acreage Leasing Policy

Download or read book Plume Migration and Pressure Evolution Analyses for Recommendations in Offshore CO2 Storage Acreage Leasing Policy written by Melianna Ulfah and published by . This book was released on 2021 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study inputs extensive geological and petrophysical data into a reservoir simulation to model the CO2 migration, analyze the plume and pressure distribution and evolution, and link the results to policy recommendations. I built a reservoir model, based on 3-D seismic interpretation of Middle Miocene strata, offshore Galveston, Texas and utilized well logs to characterize key intervals. The modeling investigated how far the CO2 plume would migrate under two scenarios: injecting CO2 at the base of the salt withdrawal basin (syncline scenario) and injecting CO2 at the base of the structural closure (base scenario). The simulation shows that by injecting the CO2 into the syncline, we need more acreage to be leased rather than injecting CO2 at the base of the structural closure for the same amount of CO2. The reason why syncline mechanism takes more acreage is because the geological layer around the injection point is more heterogeneous than the base scenario, thus making the CO2 tends to migrate laterally. On the positive side, such mechanism also limits the vertical migration of CO2, thus making syncline mechanism much less prone for the CO2 to escape to the upper geological layers. Moreover, the simulation also shows that with syncline scenario, the times needed for the reservoir to reach its stabilized pressure after the end of injections are faster. Another result of the simulation also shows that adding more wells into the study area would not significantly increase the storage capacity, and each well will suffer injectivity loss even more to maintain the reservoir pressure. Integrating the simulation results and existing policies for offshore CO2 storage, this study culminates several recommendations for the General Land Office regarding the acreage leasing policies. The main recommendation is to classify of the acreage valuation according to either the heterogeneity degree of the storage geology or the type of the structural closure targeted by the operator. Additionally, it is recommended for the GLO to closely evaluate and if necessary, limit the number of wells and operators for CO2 storage project operating in one elevated pressure area

Book A Compositional Reservoir Simulation Study to Evaluate Impacts of Captured CO2 Composition  Miscibility  and Injection Strategy on CO2 EOR and Sequestration in a Carbonate Oil Reservoir

Download or read book A Compositional Reservoir Simulation Study to Evaluate Impacts of Captured CO2 Composition Miscibility and Injection Strategy on CO2 EOR and Sequestration in a Carbonate Oil Reservoir written by Abdulhamid Alsousy and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the global energy demand rises, concerns regarding the increasing carbon levels deepen. Pushing the international community to pour their time and resources into exploring all avenues that bear potential to aid the decarbonization efforts. The decarbonization efforts attempt to either reduce carbon dioxide emissions or to capture carbon dioxide from the atmosphere. The oil and gas industry’s role falls into the first category. Where captured CO2 is sequestered into geological stable formations as part of carbon capture, utilization, and storage (CCUS) or carbon capture and storage (CCS) projects. CCUS and CCS technologies hold the keys to decarbonization, possessing a large capacity capable of storing over 8000 GtCO2, utilizing oil and gas reservoirs, saline aquifers, and coal beds to discard CO2. In addition, the sequestration in geological structures is long-term, with minimal risk of reintroducing the stored gas back to the surface. This work investigates two scenarios, one in which the reservoir undergoes a tertiary production and another where the reservoir has reached the abandonment stage of its life cycle. The analyses are carried out by employing a historically matched numerical model of a real carbonate reservoir to explore CO2 storage implications on the reservoir’s performance (EOR) and the efficiency of the injected gas storage in the subsurface. For a holistic evaluation, the numerical model accounts for relative permeability hysteresis, phase trapping, geochemistry, and thermodynamics. Various analyses are conducted to establish the recommended gas blend injected, the importance of miscibility, and the manner of injection (WAG or gas flood). The results showcased how miscible injection outperforms immiscible in CO2-EOR and sequestration efficiency. Furthermore, gas flood is recommended over WAG, especially when recycling produced gases is possible to store larger volumes of carbon dioxide

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Book Fault Reactivation and CO2 Migration in Carbon Storage

Download or read book Fault Reactivation and CO2 Migration in Carbon Storage written by Jenny Ryu and published by . This book was released on 2018 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection of carbon dioxide (CO2) underground is considered one of the possible solutions to address the increasing concentration of greenhouse gases in the atmosphere. Long-term integrity and practical storage of CO2 is contingent upon its seal performance and the dynamic sealing capacity of faults for CO2 storage site. Faults are prone to reactivation with reservoir pressurization caused by CO2 injection. The goal of this research is to create and verify a model capable of capturing fault reactivation and the resulting change of permeability. This model is then used to quantify the effects of various boundary conditions, injection scheme, and capillary entry pressure on not only the reactivation of faults but also on the potential CO2 migration along the fault

Book Multiphase Flow in Permeable Media

Download or read book Multiphase Flow in Permeable Media written by Martin J. Blunt and published by Cambridge University Press. This book was released on 2017-02-16 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a fundamental description of multiphase fluid flow through porous rock, based on understanding movement at the pore, or microscopic, scale.

Book Injection and Reservoir Hazard Management

Download or read book Injection and Reservoir Hazard Management written by and published by . This book was released on 2009 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: The In Salah Gas Project (ISG), a joint venture (JV) of BP, Sonatrach, and StatoilHydro, has two fundamental goals: (1) 25-30 years of 9 bcfy natural gas production from 8 fields in the Algerian Central Sahara, and (2) successful minimization of the associated environmental footprint by capture and subsurface isolation of the excess CO2 extracted from production streams and subsurface isolation in the Krechba sandstone reservoir. The In Salah project provides an opportunity to study key physical and chemical processes in operational deployment of geological carbon sequestration. The objectives of the research are to study two components relevant to storage effectiveness and operational success at In Salah: Reactive chemistry of the brine-CO2-reservoir-caprock-wellbore system, and the geomechanical effects of large-scale injection on crustal deformation and fault leakage hazards. Results from this work will enhance predictive capability of field performance, provide a new basis for interpretation of geophysical monitoring at In Salah, and provide additional information relevant to the creation of geological sequestration standards. The Joint Industry Partners (JIP: BP, StatoilHydro, Sonatrach) and LLNL will share data and results to achieve the objectives of the proposed work. The objective of the work performed at LLNL is to integrate LLNL core strengths in geochemistry and geomechanics to better understand and predict the fate of injected CO2 in the field. The mechanical, chemical and transport properties of the reservoir-caprock system are coupled. We are using LLNL-developed quantitative tools to assess the potential for CO2 migration/leakage caused by injection-induced deformation. The geomechanical work is focused upon fault activation, fluid induced fracturing of the caprock and permeability field evolution of the fractured reservoir. These results will be used in concert with reactive transport calculations to predict the ultimate fate of the CO2. We will integrate laboratory and reactive transport modeling to assess CO2 plume migration and partitioning between different trapping mechanisms. Geochemical reactive transport modeling will be used to address multiphase flow (supercritical CO2 and water), CO2 dissolution, mineral sequestration, and porosity/permeability changes. The reactive transport portion of the work ultimately couples with geomechanical modeling. In particular, the distribution of the pressure perturbation induced by injection drives the geomechanical response. Subsequently, the geochemical work determines if water-rock interactions eventually enhance or suppress fractures. A key focus of this work is to establish the site specific interactions of geomechanics, reactive flow and transport. This involves building and refining models of the reservoir and overburden. The models will undergo continual refinement in response to data collected in the field and experiments performed at LLNL and elsewhere. This project commenced in FY08, with DOE funding starting in April, FY08. We have successfully initiated a cross-disciplinary study of the In Salah CO2 sequestration project and have met all FY08 and FY09 Q1, Q2 and Q3 milestones. During the reporting period, we continued to acquire and process data from the JIP to import into our own geomechanical and geochemical computational tools. The lab testing program continued using both locally formulated cements and field samples from Krechba. The geomechanical studies indicate that pore fluid pressures induced by injection will lead to significant permeability enhancement of the combination of fracture network and fault network within the reservoir in the vicinity of the injectors. We continued reactive transport calculations for CO2 rich fluids flowing through fractures. These calculations demonstrate that although porosity and permeability changes are expected in response to CO2 injection they are not anticipated to have a significant effect upon transport properties within the reservoir or caprock. The experimental program continued on schedule, providing refined estimates of the in situ quality of the wellbore cement composition in the field. These results will be used to inform estimates of the risk of wellbore seepage of CO2. Geomechanical analysis identified which faults are most likely flow conduits and which are expected to act as flow barriers for inclusion into reservoir models. Subsequent NUFT simulations were performed based upon this information and the results indicate that the presence of faults in the vicinity of the KB-502 injector may be responsible for the early breakthrough of CO2 observed at KB-5. Additionally, we have simulated the uplift of the overburden resulting from NUFT reservoir models of fluid injection and compared the results with the InSAR data.

Book Coupled Hydro Mechanical Analysis of the Geological Barrier Integrity Associated with CO2 Storage

Download or read book Coupled Hydro Mechanical Analysis of the Geological Barrier Integrity Associated with CO2 Storage written by Qun Wang and published by Cuvillier Verlag. This book was released on 2016-08-11 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents an indirect hydro-mechanical (HM) coupling concept to study the caprock integrity with regards to CO2 storage in saline aquifer by means of numerical simulations. The HM coupling concept is realized by developing an effective mean stress dependent permeability model and an effective mean stress dependent Biot’s coefficient model in reservoir sandstones. The developed models are implemented into the numerical HM-simulator TOUGH2MP-FLAC3D by writing functions with Fortran 90 in an open source code TOUGH2MP and FISH Language in FLAC3D, respectively. The pilot project for CO2 storage in Ketzin is chosen as a case study to validate the developed HM concept. The numerical simulations are performed using the modified HM coupling simulator TOUGH2MP-FLAC3D. The good agreement of the simulation results with the existing research data suggests that the developed coupling concept can be used for the caprock integrity analysis in the pilot project at Ketzin. In addition, a generic model with reasonable assumption is adopted to study the caprock integrity with regards to CO2 storage in saline aquifer under commercial injection conditions, and the results confirm that the developed coupling concept can be applied to CO2 storage in commercial scale.

Book Geological Storage of CO2     Long Term Security Aspects

Download or read book Geological Storage of CO2 Long Term Security Aspects written by Axel Liebscher and published by Springer. This book was released on 2015-02-21 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the industrial use of secure, permanent storage technologies for carbon dioxide (CO2), especially geological CO2 storage. Readers are invited to discover how this greenhouse gas could be spared from permanent release into the atmosphere through storage in deep rock formations. Themes explored here include CO2 reservoir management, caprock formation, bio-chemical processes and fluid migration. Particular attention is given to groundwater protection, the improvement of sensor technology, borehole seals and cement quality. A collaborative work by scientists and industrial partners, this volume presents original research, it investigates several aspects of innovative technologies for medium-term use and it includes a detailed risk analysis. Coal-based power generation, energy consuming industrial processes (such as steel and cement) and the burning of biomass all result in carbon dioxide. Those involved in such industries who are considering geological storage of CO2, as well as earth scientists and engineers will value this book and the innovative monitoring methods described. Researchers in the field of computer imaging and pattern recognition will also find something of interest in these chapters.

Book Modeling of Geomechanical Proceses During Injection in Amultilayered Reservoir caprock System and Implications on Sitecharacterization

Download or read book Modeling of Geomechanical Proceses During Injection in Amultilayered Reservoir caprock System and Implications on Sitecharacterization written by Jens Birkholzer and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we present results of a numerical simulationof the potential for fault reactivation and hydraulic fracturingassociated with CO2 injection in a multilayered reservoir-caprock system, and discuss its implications on site characterization. The numericalsimulation is performed using the coupled processes simulator TOUGH-FLAC(Rutqvist et al. 2002, Rutqvist and Tsang, 2003), and is an extension ofearlier numerical studies of a single caprock system (Rutqvist and Tsang,2002). In this study, CO2 is injected for 30 years in a 200 meter thickpermeable saline water formation located at 1600 meters depth (Figure 1). The injection formation is overlaid by several layers of caprocks, whichare intersected by a permeable fault zone allowing upward migration ofthe CO2 within the multilayered system (see Table 1 for materialproperties). The potential for fault slip or fracturing are calculated, based on the time-dependent evolution and local distribution of fluidpressure and the three-dimensional stress field, including importantporo-elastic stresses. The numerical results are discussed with respect tothe site-characterization strategy that would be recommended forevaluation of maximum sustainable injection pressure at an industrial CO2injection site.

Book Enhanced Oil Recovery and Carbon Dioxide Sequestration in Zama Keg River F Pool

Download or read book Enhanced Oil Recovery and Carbon Dioxide Sequestration in Zama Keg River F Pool written by Adal Al-Dliwe and published by . This book was released on 2005 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) injection is an effective and promising technology for enhanced oil recovery and for reducing anthropogenic gas emissions. In this process, CO2 develops miscibility with the oil under reservoir conditions and leads to additional oil recovery. Proper reservoir characterization has a significant influence on implementing a successful CO2 flood in a reservoir. Computer simulation is an important tool for reservoir characterization and predicting optimal tradeoffs between maximum oil recovery and CO2 storage. This thesis presents the results of reservoir characterization analysis and simulation in Zama Keg River F Pool located in Northern Alberta, Canada, which was selected as a candidate for CO2 injection. This reef has a thick oil column spanned over a small area and two wells drilled on the same side of the reef. Open-hole logs and core analysis data were available for only one of the two wells. Data analyses disclosed a number of challenges that could adversely affect the results of any simulation for predicting the performance of CO2 displacement in this field. These challenges included, but were not limited to, the existence of two no-flow barriers with unknown extensions, lack of other data such as relative permeability, and lack of information on lateral distribution of the reservoir properties. Material balance analysis indicated the maximum oil in place was 4.7 MMSTB with a weak water support. A fully compositional reservoir simulation model was used to improve the understanding of the reservoir characteristics, investigate the potential amount of CO2 stored, and study the effect of CO2 injection on oil recovery using different injection strategies. Effects of different operational parameters on pore scale displacement efficiency and the overall displacement efficiency were studied. These parameters include production and injection rates, injection gas composition, well completion, mode of injection, and the timing of injection. Results of this thsesi show that by using a combination of two vertical injectors and one horizontal producer, maximum incremental oil would be recovered while a large volume of CO2 would be stored, a high net utilization factor was obtained, and maximum NPV was generated as compared to other injection-production schemes.

Book Proceedings of the International Field Exploration and Development Conference 2022

Download or read book Proceedings of the International Field Exploration and Development Conference 2022 written by Jia'en Lin and published by Springer Nature. This book was released on 2023-08-05 with total page 7600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 12th International Field Exploration and Development Conference (IFEDC 2022). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.