EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Robust Approach to Nonlinear Multivariate Analysis

Download or read book A Robust Approach to Nonlinear Multivariate Analysis written by Peter Verboon and published by . This book was released on 1994 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Multivariate Analysis

Download or read book Robust Multivariate Analysis written by David J. Olive and published by Springer. This book was released on 2017-11-28 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given. The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory. The robust techniques are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis. A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with outliers. Many R programs and R data sets are available on the author’s website.

Book Multidimensional Nonlinear Descriptive Analysis

Download or read book Multidimensional Nonlinear Descriptive Analysis written by Shizuhiko Nishisato and published by CRC Press. This book was released on 2006-06-26 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for future progress. Covering both the early and later years of MUNDA research in the social sciences, psychology, ecology, biology, and statistics, this book provides a framework for potential developments in even more areas of study.

Book Modern Quantification Theory

Download or read book Modern Quantification Theory written by Shizuhiko Nishisato and published by Springer Nature. This book was released on 2021-07-22 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a new look at well-established quantification theory for categorical data, referred to by such names as correspondence analysis, dual scaling, optimal scaling, and homogeneity analysis. These multiple identities are a consequence of its large number of properties that allow one to analyze and visualize the strength of variable association in an optimal solution. The book contains modern quantification theory for analyzing the association between two and more categorical variables in a variety of applicative frameworks. Visualization has attracted much attention over the past decades and given rise to controversial opinions. One may consider variations of plotting systems used in the construction of the classic correspondence plot, the biplot, the Carroll-Green-Schaffer scaling, or a new approach in doubled multidimensional space as presented in the book. There are even arguments for no visualization at all. The purpose of this book therefore is to shed new light on time-honored graphical procedures with critical reviews, new ideas, and future directions as alternatives. This stimulating volume is written with fresh new ideas from the traditional framework and the contemporary points of view. It thus offers readers a deep understanding of the ever-evolving nature of quantification theory and its practice. Part I starts with illustrating contingency table analysis with traditional joint graphical displays (symmetric, non-symmetric) and the CGS scaling and then explores logically correct graphs in doubled Euclidean space for both row and column variables. Part II covers a variety of mathematical approaches to the biplot strategy in graphing a data structure, providing a useful source for this modern approach to graphical display. Part II is also concerned with a number of alternative approaches to the joint graphical display such as bimodal cluster analysis and other statistical problems relevant to quantification theory.

Book New Developments in Classification and Data Analysis

Download or read book New Developments in Classification and Data Analysis written by Maurizio Vichi and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains revised versions of selected papers presented during the biannual meeting of the Classification and Data Analysis Group of SocietA Italiana di Statistica, which was held in Bologna, September 22-24, 2003. The scientific program of the conference included 80 contributed papers. Moreover it was possible to recruit six internationally renowned invited spe- ers for plenary talks on their current research works regarding the core topics of IFCS (the International Federation of Classification Societies) and Wo- gang Gaul and the colleagues of the GfKl organized a session. Thus, the conference provided a large number of scientists and experts from home and abroad with an attractive forum for discussions and mutual exchange of knowledge. The talks in the different sessions focused on methodological developments in supervised and unsupervised classification and in data analysis, also p- viding relevant contributions in the context of applications. This suggested the presentation of the 43 selected papers in three parts as follows: CLASSIFICATION AND CLUSTERING Non parametric classification Clustering and dissimilarities MULTIVARIATE STATISTICS AND DATA ANALYSIS APPLIED MULTIVARIATE STATISTICS Environmental data Microarray data Behavioural and text data Financial data We wish to express our gratitude to the authors whose enthusiastic p- ticipation made the meeting possible. We are very grateful to the reviewers for the time spent in their professional reviewing work. We would also like to extend our thanks to the chairpersons and discussants of the sessions: their comments and suggestions proved very stimulating both for the authors and the audience.

Book Measurement  Mathematics and New Quantification Theory

Download or read book Measurement Mathematics and New Quantification Theory written by Shizuhiko Nishisato and published by Springer Nature. This book was released on 2023-06-12 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to thoroughly prepare diverse areas of researchers in quantification theory. As is well known, quantification theory has attracted the attention of a countless number of researchers, some mathematically oriented and others not, but all of them are experts in their own disciplines. Quantifying non-quantitative (qualitative) data requires a variety of mathematical and statistical strategies, some of which are quite complicated. Unlike many books on quantification theory, the current book places more emphasis on preliminary requisites of mathematical tools than on details of quantification theory. As such, the book is primarily intended for readers whose specialty is outside mathematical sciences. The book was designed to offer non-mathematicians a variety of mathematical tools used in quantification theory in simple terms. Once all the preliminaries are fully discussed, quantification theory is then introduced in the last section as a simple application of those mathematical procedures fully discussed so far. The book opens up further frontiers of quantification theory as simple applications of basic mathematics.

Book Multivariate Data Analysis on Matrix Manifolds

Download or read book Multivariate Data Analysis on Matrix Manifolds written by Nickolay Trendafilov and published by Springer Nature. This book was released on 2021-09-15 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization.

Book Constrained Principal Component Analysis and Related Techniques

Download or read book Constrained Principal Component Analysis and Related Techniques written by Yoshio Takane and published by CRC Press. This book was released on 2016-04-19 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? Wha

Book Modern Multidimensional Scaling

Download or read book Modern Multidimensional Scaling written by Ingwer Borg and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional scaling (MDS) is a technique for the analysis of similarity or dissimilarity data on a set of objects. Such data may be intercorrelations of test items, ratings of similarity on political candidates, or trade indices for a set of countries. MDS attempts to model such data as distances among points in a geometric space. The main reason for doing this is that one wants a graphical display of the structure of the data, one that is much easier to understand than an array of numbers and, moreover, one that displays the essential information in the data, smoothing out noise. There are numerous varieties of MDS. Some facets for distinguishing among them are the particular type of geometry into which one wants to map the data, the mapping function, the algorithms used to find an optimal data representation, the treatment of statistical error in the models, or the possibility to represent not just one but several similarity matrices at the same time. Other facets relate to the different purposes for which MDS has been used, to various ways of looking at or "interpreting" an MDS representation, or to differences in the data required for the particular models. In this book, we give a fairly comprehensive presentation of MDS. For the reader with applied interests only, the first six chapters of Part I should be sufficient. They explain the basic notions of ordinary MDS, with an emphasis on how MDS can be helpful in answering substantive questions.

Book An Introduction to Applied Multivariate Analysis with R

Download or read book An Introduction to Applied Multivariate Analysis with R written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2011-04-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Book Fuzzy Regression Analysis

Download or read book Fuzzy Regression Analysis written by Janusz Kacprzyk and published by Physica. This book was released on 1992-08-27 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression analysis is a relatively simple yet extremely useful and widely employed tool for determining relationship between some variables on the basis of some observed values taken by these variables. Fuzzy regression analysis has been recently deviced to accomodate in the framework of regression analysis vaguely specified data which are omnipresent in many applications, notably in all areas where human judgements are used. Fuzzy sets theory provides here proper tools. This book is a collection of papers written by virtually all major contributors to fuzzy regression. Its main issue is that vague, imprecise, etc. data may now be used in regression analysis. This is new. Apart from this it gives an extensive coverage of the whole field of fuzzy regression, both in a strictly mathematical and applicational perspective. Most approaches are algorithmic, and can be readily implemented. Information on software is provided.

Book The New Palgrave Dictionary of Economics

Download or read book The New Palgrave Dictionary of Economics written by and published by Springer. This book was released on 2016-05-18 with total page 7493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.

Book Mechcomp3

    Book Details:
  • Author : Antonio J.M. Ferreira
  • Publisher : Società Editrice Esculapio
  • Release : 2017-05-25
  • ISBN : 889385029X
  • Pages : 188 pages

Download or read book Mechcomp3 written by Antonio J.M. Ferreira and published by Società Editrice Esculapio. This book was released on 2017-05-25 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of composite materials has grown exponentially in the last decades and has affected many engineering fields due to their enhanced mechanical properties and improved features with respect to conventional materials. For instance, they are employed in civil engineering (seismic isolators, long-span bridges, vaults), mechanical engineering (turbines, machine components), aerospace and naval engineering (fuselages, boat hulls and sails), automotive engineering (car bodies, tires), and biomechanical engineering (prostheses).Nevertheless, the greater use of composites requires a rapid progress in gaining the needed knowledge to design and manufacture composite structures. Thus, researchers and designers devote their own efforts to develop new analysis techniques, design methodologies, manufacturing procedures, micromechanics approaches, theoretical models, and numerical methods. For these purpose, it is extremely easy to find many recent journal papers, books, and technical notes, focused on the mechanics of composites. In particular, several studies are presented to take advantage of their superior features by varying some typical structural parameters (such as geometry, fiber orientations, volume fraction, structural stiffness, weight, lamination scheme). Therefore, this Conference aims to collect contributions from every part of the globe that can increase the knowledge of composite materials and their applications, by engaging researches and professional engineers and designers from different sectors. The same aims and scopes have been reached by the previous editions of Mechanics of Composites International Conferences (MECHCOMP), which occurred in 2014 at Stony Brook University (USA) and in 2016 at University of Porto (Portugal).

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1852 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Nonlinear Regression

Download or read book Robust Nonlinear Regression written by Hossein Riazoshams and published by John Wiley & Sons. This book was released on 2018-06-11 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to discuss robust aspects of nonlinear regression—with applications using R software Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets. The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression Addresses some commonly mishandled aspects of modeling R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying website Robust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics.

Book Multivariate Observations

Download or read book Multivariate Observations written by George A. F. Seber and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.