Download or read book Neural Network Solutions for Trading in Financial Markets written by Dirk Emma Baestaens and published by Pitman Publishing. This book was released on 1994 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an alternative technique in forecasting to the traditional techniques used in trading and dealing. The book explains the shortcomings of traditional techniques and shows how neural networks overcome many of the disadvantages of these traditional systems.
Download or read book Neural Networks in Finance and Investing written by Robert R. Trippi and published by Irwin Professional Publishing. This book was released on 1993 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many believe that neural networks will eventually out-perform even the best traders and investors, yet this extraordinary technology remained largely inaccessible to practitioners--prior to this landmark text. Nowhere else will you find such a thorough and relevant examination of the applications and potential of this cutting-edge technology. This book not only contains many examples of neural networks for prediction and risk assessment, but provides promising systems for forecasting and explaining price movements of stocks and securities. Sections include neural network overview; analysis of financial condition; business failure prediction; debt risk assessment; security market applications; and neural network approaches to financial forecasting.
Download or read book Stock Market Prediction and Efficiency Analysis using Recurrent Neural Network written by Joish Bosco and published by GRIN Verlag. This book was released on 2018-09-18 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Project Report from the year 2018 in the subject Computer Science - Technical Computer Science, , course: Computer Science, language: English, abstract: Modeling and Forecasting of the financial market have been an attractive topic to scholars and researchers from various academic fields. The financial market is an abstract concept where financial commodities such as stocks, bonds, and precious metals transactions happen between buyers and sellers. In the present scenario of the financial market world, especially in the stock market, forecasting the trend or the price of stocks using machine learning techniques and artificial neural networks are the most attractive issue to be investigated. As Giles explained, financial forecasting is an instance of signal processing problem which is difficult because of high noise, small sample size, non-stationary, and non-linearity. The noisy characteristics mean the incomplete information gap between past stock trading price and volume with a future price. The stock market is sensitive with the political and macroeconomic environment. However, these two kinds of information are too complex and unstable to gather. The above information that cannot be included in features are considered as noise. The sample size of financial data is determined by real-world transaction records. On one hand, a larger sample size refers a longer period of transaction records; on the other hand, large sample size increases the uncertainty of financial environment during the 2 sample period. In this project, we use stock data instead of daily data in order to reduce the probability of uncertain noise, and relatively increase the sample size within a certain period of time. By non-stationarity, one means that the distribution of stock data is various during time changing. Non-linearity implies that feature correlation of different individual stocks is various. Efficient Market Hypothesis was developed by Burton G. Malkiel in 1991.
Download or read book Machine Learning in Quantitative Finance History Theory and Applications written by Mcghee and published by . This book was released on 2019-06-07 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Neural Networks in Finance written by Paul D. McNelis and published by Elsevier. This book was released on 2005-01-20 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong.* Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Download or read book Neural Networks and the Financial Markets written by Jimmy Shadbolt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at financial prediction from a broad range of perspectives. It covers: - the economic arguments - the practicalities of the markets - how predictions are used - how predictions are made - how predictions are turned into something usable (asset locations) It combines a discussion of standard theory with state-of-the-art material on a wide range of information processing techniques as applied to cutting-edge financial problems. All the techniques are demonstrated with real examples using actual market data, and show that it is possible to extract information from very noisy, sparse data sets. Aimed primarily at researchers in financial prediction, time series analysis and information processing, this book will also be of interest to quantitative fund managers and other professionals involved in financial prediction.
Download or read book Developing an Effective Model for Detecting Trade Based Market Manipulation written by Jose Joy Thoppan and published by Emerald Group Publishing. This book was released on 2021-05-05 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing an Effective Model for Detecting Trade-Based Market Manipulation determines an appropriate model to help identify stocks witnessing activities that are indicative of potential manipulation through three separate but related studies.
Download or read book Stock price analysis through Statistical and Data Science tools An Overview written by Vinaitheerthan Renganathan and published by Vinaitheerthan Renganathan. This book was released on 2021-04-30 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stock price analysis involves different methods such as fundamental analysis and technical analysis which is based on data related to price movement of the stock in the past. Price of the stock is affected by various factors such as company’s performance, current status of economy and political factor. These factors play an important role in supply and demand of the stock which makes the price to be volatile in the short term. Investors and stock traders aim to book profit through buying and selling the stocks. There are different statistical and data science tools are being used to predict the stock price. Data Science and Statistical tools assume only the stock price’s historical data in predicting the future stock price. Statistical tools include measures such as Graph and Charts which depicts the general trend and time series tools such as Auto Regressive Integrated Moving Averages (ARIMA) and regression analysis. Data Science tools include models like Decision Tree, Support Vector Machine (SVM), Artificial Neural Network (ANN) and Long Term and Short Term Memory (LSTM) Models. Current methods include carrying out sentiment analysis of tweets, comments and other social media discussion to extract the hidden sentiment expressed by the users which indicate the positive or negative sentiment towards the stock price and the company. The book provides an overview of the analyzing and predicting stock price movements using statistical and data science tools using R open source software with hypothetical stock data sets. It provides a short introduction to R software to enable the user to understand analysis part in the later part. The book will not go into details of suggesting when to purchase a stock or what at price. The tools presented in the book can be used as a guiding tool in decision making while buying or selling the stock. Vinaitheerthan Renganathan www.vinaitheerthan.com/book.php
Download or read book A Machine Learning based Pairs Trading Investment Strategy written by Simão Moraes Sarmento and published by Springer Nature. This book was released on 2020-07-13 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the application of promising machine learning techniques to address two problems: (i) how to find profitable pairs while constraining the search space and (ii) how to avoid long decline periods due to prolonged divergent pairs. It also proposes the integration of an unsupervised learning algorithm, OPTICS, to handle problem (i), and demonstrates that the suggested technique can outperform the common pairs search methods, achieving an average portfolio Sharpe ratio of 3.79, in comparison to 3.58 and 2.59 obtained using standard approaches. For problem (ii), the authors introduce a forecasting-based trading model capable of reducing the periods of portfolio decline by 75%. However, this comes at the expense of decreasing overall profitability. The authors also test the proposed strategy using an ARMA model, an LSTM and an LSTM encoder-decoder.
Download or read book Deep Learning Tools for Predicting Stock Market Movements written by Renuka Sharma and published by John Wiley & Sons. This book was released on 2024-05-14 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING TOOLS for PREDICTING STOCK MARKET MOVEMENTS The book provides a comprehensive overview of current research and developments in the field of deep learning models for stock market forecasting in the developed and developing worlds. The book delves into the realm of deep learning and embraces the challenges, opportunities, and transformation of stock market analysis. Deep learning helps foresee market trends with increased accuracy. With advancements in deep learning, new opportunities in styles, tools, and techniques evolve and embrace data-driven insights with theories and practical applications. Learn about designing, training, and applying predictive models with rigorous attention to detail. This book offers critical thinking skills and the cultivation of discerning approaches to market analysis. The book: details the development of an ensemble model for stock market prediction, combining long short-term memory and autoregressive integrated moving average; explains the rapid expansion of quantum computing technologies in financial systems; provides an overview of deep learning techniques for forecasting stock market trends and examines their effectiveness across different time frames and market conditions; explores applications and implications of various models for causality, volatility, and co-integration in stock markets, offering insights to investors and policymakers. Audience The book has a wide audience of researchers in financial technology, financial software engineering, artificial intelligence, professional market investors, investment institutions, and asset management companies.
Download or read book Neural Networks in Business Forecasting written by G. Peter Zhang and published by IGI Global. This book was released on 2004-01-01 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is one of the most important activities that form the basis for strategic, tactical, and operational decisions in all business organizations. Recently, neural networks have emerged as an important tool for business forecasting. Neural Networks in Business Forecasting provides researchers and practitioners with some recent advances in applying neural networks to business forecasting. A number of case studies demonstrating the innovative or successful applications of neural networks to many areas of business as well as methods to improve neural network forecasting performance are presented.
Download or read book Deep Learning for Finance written by Sofien Kaabar and published by "O'Reilly Media, Inc.". This book was released on 2024-01-08 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is rapidly gaining momentum in the world of finance and trading. But for many professional traders, this sophisticated field has a reputation for being complex and difficult. This hands-on guide teaches you how to develop a deep learning trading model from scratch using Python, and it also helps you create and backtest trading algorithms based on machine learning and reinforcement learning. Sofien Kaabar—financial author, trading consultant, and institutional market strategist—introduces deep learning strategies that combine technical and quantitative analyses. By fusing deep learning concepts with technical analysis, this unique book presents outside-the-box ideas in the world of financial trading. This A-Z guide also includes a full introduction to technical analysis, evaluating machine learning algorithms, and algorithm optimization. Understand and create machine learning and deep learning models Explore the details behind reinforcement learning and see how it's used in time series Understand how to interpret performance evaluation metrics Examine technical analysis and learn how it works in financial markets Create technical indicators in Python and combine them with ML models for optimization Evaluate the models' profitability and predictability to understand their limitations and potential
Download or read book Big Data and Machine Learning in Quantitative Investment written by Tony Guida and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.
Download or read book Neural Networks for Financial Forecasting written by Edward Gately and published by Wiley. This book was released on 1995-10-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Succinctly explains how neural networks function, what they can accomplish as well as how to use, construct and apply them for maximum profit. Selecting what is to be predicted and choosing proper inputs, deciding on the best network architecture, training, and algorithms are among the topics discussed. Highlights examples of successful networks. Numerous graphs and spreadsheets are used to illustrate concepts. The appendix features lists of neural network suppliers, useful publications and more.
Download or read book Hands On Deep Learning for Finance written by Luigi Troiano and published by . This book was released on 2020-02-28 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: