Download or read book The Monge Amp re Equation written by Cristian E. Gutierrez and published by Springer Science & Business Media. This book was released on 2001-05-11 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monge-Ampère equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics. Monge-Ampère type equations have applications in the areas of differential geometry, the calculus of variations, and several optimization problems, such as the Monge-Kantorovitch mass transfer problem. This book stresses the geometric aspects of this beautiful theory, using techniques from harmonic analysis – covering lemmas and set decompositions.
Download or read book Nonlinear Partial Differential Equations in Differential Geometry written by Robert Hardt and published by American Mathematical Soc.. This book was released on 1994 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.
Download or read book Regularity Theory for Quasilinear Elliptic Systems and Monge Ampere Equations in Two Dimensions written by Friedmar Schulz and published by Springer. This book was released on 2006-12-08 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes have been written as an introduction to the characteristic theory for two-dimensional Monge-Ampère equations, a theory largely developed by H. Lewy and E. Heinz which has never been presented in book form. An exposition of the Heinz-Lewy theory requires auxiliary material which can be found in various monographs, but which is presented here, in part because the focus is different, and also because these notes have an introductory character. Self-contained introductions to the regularity theory of elliptic systems, the theory of pseudoanalytic functions and the theory of conformal mappings are included. These notes grew out of a seminar given at the University of Kentucky in the fall of 1988 and are intended for graduate students and researchers interested in this area.
Download or read book Degenerate Complex Monge Amp re Equations written by Vincent Guedj and published by . This book was released on with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Pluripotential Theory written by Maciej Klimek and published by . This book was released on 1991 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pluripotential theory is a recently developed non-linear complex counterpart of classical potential theory. Its main area of application is multidimensional complex analysis. The central part of the pluripotential theory is occupied by maximal plurisubharmonic functions and the generalized complex Monge-Ampere operator. The interplay between these two concepts provides the focal point of this monograph, which contains an up-to-date account of the developments from the large volume of recent work in this area. A substantial proportion of the work is devoted to classical properties of subharmonic and plurisubharmonic functions, which makes the pluripotential theory available for the first time to a wide audience of analysts.
Download or read book Elliptic Partial Differential Equations of Second Order written by D. Gilbarg and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Download or read book Convex Analysis and Nonlinear Geometric Elliptic Equations written by Ilya J. Bakelman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.
Download or read book Dynamical and Geometric Aspects of Hamilton Jacobi and Linearized Monge Amp re Equations written by Hiroyoshi Mitake and published by Springer. This book was released on 2017-06-14 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.
Download or read book An Introduction to Extremal Kahler Metrics written by Gábor Székelyhidi and published by American Mathematical Soc.. This book was released on 2014-06-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Download or read book The Monge Amp re Equation written by Cristian E. Gutiérrez and published by Birkhäuser. This book was released on 2016-10-22 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.
Download or read book Monge Ampere Equation Applications to Geometry and Optimization written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 1999 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the Monge Ampère Equation has received attention for its role in several new areas of applied mathematics: as a new method of discretization for evolution equations of classical mechanics, such as the Euler equation, flow in porous media, Hele-Shaw flow, etc.; as a simple model for optimal transportation and a div-curl decomposition with affine invariance; and as a model for front formation in meteorology and optimal antenna design. These applications were addressed and important theoretical advances presented at a NSF-CBMS conference held at Florida Atlantic University (Boca Raton). L. Cafarelli and other distinguished specialists contributed high-quality research results and up-to-date developments in the field. This is a comprehensive volume outlining current directions in nonlinear analysis and its applications.
Download or read book The Complex Monge Ampere Equation and Pluripotential Theory written by Sławomir Kołodziej and published by American Mathematical Soc.. This book was released on 2005 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Download or read book Optimal Transport for Applied Mathematicians written by Filippo Santambrogio and published by Birkhäuser. This book was released on 2015-10-17 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.
Download or read book Isometric Embedding of Riemannian Manifolds in Euclidean Spaces written by Qing Han and published by American Mathematical Soc.. This book was released on 2006 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.
Download or read book Geometric Analysis written by Jingyi Chen and published by Springer Nature. This book was released on 2020-04-10 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
Download or read book Partial Differential Equations III written by Michael Taylor and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis. ^