Download or read book Computational Methods Based on Peridynamics and Nonlocal Operators written by Timon Rabczuk and published by Springer Nature. This book was released on 2023-02-15 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of computational methods based on peridynamics and nonlocal operators and their application to challenging numerical problems which are difficult to deal with traditional methods such as the finite element method, material failure being “only” one of them. The authors have also developed a higher-order nonlocal operator approaches capable of solving higher-order partial differential equations on arbitrary domains in higher-dimensional space with ease. This book is of interest to those in academia and industry.
Download or read book Extended Finite Element and Meshfree Methods written by Timon Rabczuk and published by Academic Press. This book was released on 2019-11-13 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suited for applications, such as crack propagation, two-phase flow, fluid-structure-interaction, optimization and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method and extended isogeometric analysis. This book also addresses their implementation and provides small MATLAB codes on each sub-topic. Also discussed are the challenges and efficient algorithms for tracking the crack path which plays an important role for complex engineering applications. - Explains all the important theory behind XFEM and meshfree methods - Provides advice on how to implement XFEM for a range of practical purposes, along with helpful MATLAB codes - Draws on the latest research to explore new topics, such as the applications of XFEM to shell formulations, and extended meshfree and extended isogeometric methods - Introduces alternative modeling methods to help readers decide what is most appropriate for their work
Download or read book Advances in Applied Mechanics written by Daniel S. Balint and published by Academic Press. This book was released on 2020-10-23 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Applied Mechanics, Volume 53 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters on Phase field modelling of fracture, Advanced geometry representations and tools for microstructural and multiscale modelling, The material point method: the past and the future, From Experimental Modeling of Shotcrete to Large Scale Numerical Simulations of Tunneling, and Material point method after 25 years: theory, implementation, applications. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Applied Mechanics series
Download or read book The Variational Approach to Fracture written by Blaise Bourdin and published by Springer Science & Business Media. This book was released on 2008-04-19 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.
Download or read book Peridynamic Differential Operator for Numerical Analysis written by Erdogan Madenci and published by Springer. This book was released on 2019-01-17 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.
Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Download or read book Peridynamic Modeling Numerical Techniques and Applications written by Erkan Oterkus and published by Elsevier. This book was released on 2021-04-29 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an incisive look at cutting-edge peridynamic modeling methods, numerical techniques, their applications, and potential future directions for the field. It starts with an introductory chapter authored by Stewart Silling, who originally developed peridynamics. It then looks at new concepts in the field, with chapters covering dual-horizon peridynamics, peridynamics for axisymmetric analysis, beam and plate models in peridynamics, coupled peridynamics and XFEM, peridynamics for dynamic fracture modeling, and more. From there, it segues into coverage of cutting-edge applications of peridynamics, exploring its biological applications, modeling at the nanoscale, peridynamics for composites delamination and damage in ceramics, and more, concluding with a chapter on the application of artificial intelligence and machine learning in peridynamics. Covers modeling methods, numerical techniques, applications, and future directions for the field Discusses techniques such as dual-horizon peridynamics, damage modeling using the phase-field approach, and contact analysis of rigid and deformable bodies with refined non-ordinary state-based peridynamics Looks at a range of different peridynamic applications such as ice modeling, fiber-reinforced composite modeling, modeling at nanoscale, and more
Download or read book Non Smooth Thermomechanics written by Michel Fremond and published by Springer Science & Business Media. This book was released on 2001-10-09 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on practical problems in mechanical engineering, here the author develops the fundamental concepts of non-smooth mechanics and introduces the necessary background material needed to deal with mechanics involving discontinuities and non-smooth constraints.
Download or read book A3N2M Approximation Applications and Analysis of Nonlocal Nonlinear Models written by Tadele Mengesha and published by Springer Nature. This book was released on 2023-09-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects papers based on plenary and invited talks given at the 50th Barrett Memorial Lectures on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models that was organized by the University of Tennessee, Knoxville and held virtually in May 2021. The three-day meeting brought together experts from the computational, scientific, engineering, and mathematical communities who work with nonlocal models. These proceedings collect contributions and give a survey of the state of the art in computational practices, mathematical analysis, applications of nonlocal models, and explorations of new application domains. The volume benefits from the mixture of contributions by computational scientists, mathematicians, and application specialists. The content is suitable for graduate students as well as specialists working with nonlocal models and covers topics on fractional PDEs, regularity theory for kinetic equations, approximation theory for fractional diffusion, analysis of nonlocal diffusion model as a bridge between local and fractional PDEs, and more.
Download or read book Computational Methods for Fracture written by Timon Rabczuk and published by MDPI. This book was released on 2019-10-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Download or read book Nonlocal Theory of Material Media written by D. Rogula and published by Springer. This book was released on 2014-05-04 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Methods in Continuum Mechanics of Solids written by Martin Kružík and published by Springer. This book was released on 2019-03-02 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily focuses on rigorous mathematical formulation and treatment of static problems arising in continuum mechanics of solids at large or small strains, as well as their various evolutionary variants, including thermodynamics. As such, the theory of boundary- or initial-boundary-value problems for linear or quasilinear elliptic, parabolic or hyperbolic partial differential equations is the main underlying mathematical tool, along with the calculus of variations. Modern concepts of these disciplines as weak solutions, polyconvexity, quasiconvexity, nonsimple materials, materials with various rheologies or with internal variables are exploited. This book is accompanied by exercises with solutions, and appendices briefly presenting the basic mathematical concepts and results needed. It serves as an advanced resource and introductory scientific monograph for undergraduate or PhD students in programs such as mathematical modeling, applied mathematics, computational continuum physics and engineering, as well as for professionals working in these fields.
Download or read book Approximation of Free Discontinuity Problems written by Andrea Braides and published by Springer Science & Business Media. This book was released on 1998-09-17 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.
Download or read book Peridynamic Theory and Its Applications written by Erdogan Madenci and published by Springer Science & Business Media. This book was released on 2013-10-21 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the peridynamic theory, which provides the capability for improved modeling of progressive failure in materials and structures, and paves the way for addressing multi-physics and multi-scale problems. The book provides students and researchers with a theoretical and practical knowledge of the peridynamic theory and the skills required to analyze engineering problems. The text may be used in courses such as Multi-physics and Multi-scale Analysis, Nonlocal Computational Mechanics, and Computational Damage Prediction. Sample algorithms for the solution of benchmark problems are available so that the reader can modify these algorithms, and develop their own solution algorithms for specific problems. Students and researchers will find this book an essential and invaluable reference on the topic.
Download or read book Fracture Mechanics of Concrete written by Surendra P. Shah and published by John Wiley & Sons. This book was released on 1995-09-28 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: FRACTURE MECHANICS OF CONCRETE AND ROCK This book offers engineers a unique opportunity to learn, frominternationally recognized leaders in their field, about the latesttheoretical advances in fracture mechanics in concrete, reinforcedconcrete structures, and rock. At the same time, it functions as asuperb, graduate-level introduction to fracture mechanics conceptsand analytical techniques. Reviews, in depth, the basic theory behind fracture mechanics * Covers the application of fracture mechanics to compressionfailure, creep, fatigue, torsion, and other advanced topics * Extremely well researched, applies experimental evidence ofdamage to a wide range of design cases * Supplies all relevant formulas for stress intensity * Covers state-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Describes nonlinear fracture mechanics (NLFM) and the latestRILEM modeling techniques for testing nonlinear quasi-brittlematerials * And much more Over the past few years, researchers employing techniques borrowedfrom fracture mechanics have made many groundbreaking discoveriesconcerning the causes and effects of cracking, damage, andfractures of plain and reinforced concrete structures and rock.This, in turn, has resulted in the further development andrefinement of fracture mechanics concepts and tools. Yet, despitethe field's growth and the growing conviction that fracturemechanics is indispensable to an understanding of material andstructural failure, there continues to be a surprising shortage oftextbooks and professional references on the subject. Written by two of the foremost names in the field, FractureMechanics of Concrete fills that gap. The most comprehensive bookever written on the subject, it consolidates the latest theoreticalresearch from around the world in a single reference that can beused by students and professionals alike. Fracture Mechanics of Concrete is divided into two sections. In thefirst, the authors lay the necessary groundwork with an in-depthreview of fundamental principles. In the second section, theauthors vividly demonstrate how fracture mechanics has beensuccessfully applied to failures occurring in a wide array ofdesign cases. Key topics covered in these sections include: * State-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Nonlinear fracture mechanics (NLFM) and the latest RILEM modelingtechniques for testing nonlinear quasi-brittle materials * The use of R-Curves to describe cracking and fracture inquasi-brittle materials * The application of fracture mechanics to compression failure,creep, fatigue, torsion, and other advanced topics The most timely, comprehensive, and authoritative book on thesubject currently available, Fracture Mechanics of Concrete is botha complete instructional tool for academics and students instructural and geotechnical engineering courses, and anindispensable working resource for practicing engineers.