EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Nonlinear Transistor Model and Device Characterization

Download or read book A Nonlinear Transistor Model and Device Characterization written by Parviz Kiankhooy-Fard and published by . This book was released on 1966 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Transistor Model Parameter Extraction Techniques

Download or read book Nonlinear Transistor Model Parameter Extraction Techniques written by Matthias Rudolph and published by Cambridge University Press. This book was released on 2011-10-13 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve accurate and reliable parameter extraction using this complete survey of state-of-the-art techniques and methods. A team of experts from industry and academia provides you with insights into a range of key topics, including parasitics, intrinsic extraction, statistics, extraction uncertainty, nonlinear and DC parameters, self-heating and traps, noise, and package effects. Learn how similar approaches to parameter extraction can be applied to different technologies. A variety of real-world industrial examples and measurement results show you how the theories and methods presented can be used in practice. Whether you use transistor models for evaluation of device processing and you need to understand the methods behind the models you use, or you want to develop models for existing and new device types, this is your complete guide to parameter extraction.

Book Parameter Extraction and Complex Nonlinear Transistor Models

Download or read book Parameter Extraction and Complex Nonlinear Transistor Models written by Gunter Kompa and published by Artech House. This book was released on 2019-12-31 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: All model parameters are fundamentally coupled together, so that directly measured individual parameters, although widely used and accepted, may initially only serve as good estimates. This comprehensive resource presents all aspects concerning the modeling of semiconductor field-effect device parameters based on gallium-arsenide (GaAs) and gallium nitride (GaN) technology. Metal-semiconductor field-effect transistors (MESFETs), high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs), their structures and functions, and existing transistor models are also classified. The Shockley model is presented in order to give insight into semiconductor field-effect transistor (FET) device physics and explain the relationship between geometric and material parameters and device performance. Extraction of trapping and thermal time constants is discussed. A special section is devoted to standard nonlinear FET models applied to large-signal measurements, including static-/pulsed-DC and single-/two-tone stimulation. High power measurement setups for signal waveform measurement, wideband source-/load-pull measurement (including envelope source-/load pull) are also included, along with high-power intermodulation distortion (IMD) measurement setup (including envelope load-pull). Written by a world-renowned expert in the field, this book is the first to cover of all aspects of semiconductor FET device modeling in a single volume.

Book Modeling and Characterization of RF and Microwave Power FETs

Download or read book Modeling and Characterization of RF and Microwave Power FETs written by Peter Aaen and published by Cambridge University Press. This book was released on 2007-06-25 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive exposition of FET modeling, and is a must-have resource for seasoned professionals and new graduates in the RF and microwave power amplifier design and modeling community. In it, you will find descriptions of characterization and measurement techniques, analysis methods, and the simulator implementation, model verification and validation procedures that are needed to produce a transistor model that can be used with confidence by the circuit designer. Written by semiconductor industry professionals with many years' device modeling experience in LDMOS and III-V technologies, this was the first book to address the modeling requirements specific to high-power RF transistors. A technology-independent approach is described, addressing thermal effects, scaling issues, nonlinear modeling, and in-package matching networks. These are illustrated using the current market-leading high-power RF technology, LDMOS, as well as with III-V power devices.

Book Semiconductor Material and Device Characterization

Download or read book Semiconductor Material and Device Characterization written by Dieter K. Schroder and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Book Transistor Technology  Principles of device characterization  Design for manufacture  A manufacturing procedure

Download or read book Transistor Technology Principles of device characterization Design for manufacture A manufacturing procedure written by Bell Telephone Laboratories and published by . This book was released on 1952 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Behavioral Modeling of Nonlinear RF and Microwave Devices

Download or read book Behavioral Modeling of Nonlinear RF and Microwave Devices written by Thomas R. Turlington and published by Artech House Microwave Library. This book was released on 2000 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a well-known authority in the field, this new book is the first to explain behavioral modeling of nonlinear RF and microwave devices, and presents a powerful curve fitting technique you can use to accurately describe the behavior and range of microwave components as a function of multiple independent variables. This thorough and detailed examination of behavioral modeling is comprehensible and features easily-understood mathematical formulas.

Book Analysis and Simulation of Semiconductor Devices

Download or read book Analysis and Simulation of Semiconductor Devices written by S. Selberherr and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.

Book Nonlinear Characterization of Microwave Transistors by the Means of Pulsed I V  and Pulsed S Parameters Measurements

Download or read book Nonlinear Characterization of Microwave Transistors by the Means of Pulsed I V and Pulsed S Parameters Measurements written by and published by . This book was released on 1910 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A versatile pulsed I(V) and 40 GHz pulsed S parameters measurement system of microwave transistors is described Capability of discrimination between thermal and trapping effects with a pulse set-up is demonstrated A method to measure electrically the thermal resistance and capacitance of transistors with a pulse set-up is proposed Finally, it is explained how to derive transistor nonlinear characteristics from these measurements for modeling purposes.

Book Heterojunction Bipolar Transistors for Circuit Design

Download or read book Heterojunction Bipolar Transistors for Circuit Design written by Jianjun Gao and published by John Wiley & Sons. This book was released on 2015-04-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: A highly comprehensive summary on circuit related modeling techniques and parameter extraction methods for heterojunction bipolar transistors Heterojunction Bipolar Transistor (HBT) is one of the most important devices for microwave applications. The book details the accurate device modeling for HBTs and high level IC design using HBTs Provides a valuable reference to basic modeling issues and specific semiconductor device models encountered in circuit simulators, with a thorough reference list at the end of each chapter for onward learning Offers an overview on modeling techniques and parameter extraction methods for heterojunction bipolar transistors focusing on circuit simulation and design Presents electrical/RF engineering-related theory and tools and include equivalent circuits and their matrix descriptions, noise, small and large signal analysis methods

Book GaN Transistor Modeling for RF and Power Electronics

Download or read book GaN Transistor Modeling for RF and Power Electronics written by Yogesh Singh Chauhan and published by Elsevier. This book was released on 2024-05-20 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: GaN Transistor Modeling for RF and Power Electronics: Using The ASM-GaN-HEMT Model covers all aspects of characterization and modeling of GaN transistors for both RF and Power electronics applications. Chapters cover an in-depth analysis of the industry standard compact model ASM-HEMT for GaN transistors. The book details the core surface-potential calculations and a variety of real device effects, including trapping, self-heating, field plate effects, and more to replicate realistic device behavior. The authors also include chapters on step-by-step parameter extraction procedures for the ASM-HEMT model and benchmark test results. GaN is the fastest emerging technology for RF circuits as well as power electronics. This technology is going to grow at an exponential rate over the next decade. This book is envisioned to serve as an excellent reference for the emerging GaN technology, especially for circuit designers, materials science specialists, device engineers and academic researchers and students. - Provides an overview of the operation and physics of GaN-based transistors - Features in-depth description (by the developers of the model) of all aspects of the industry standard ASM-HEMT model for GaN circuits - Details parameter extraction of GaN devices and measurement data requirements for GaN model extraction

Book X Parameters

Download or read book X Parameters written by David E. Root and published by Cambridge University Press. This book was released on 2013-09-26 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the definitive guide to X-parameters, written by the original inventors and developers of this powerful new paradigm for nonlinear RF and microwave components and systems. Learn how to use X-parameters to overcome intricate problems in nonlinear RF and microwave engineering. The general theory behind X-parameters is carefully and intuitively introduced, and then simplified down to specific, practical cases, providing you with useful approximations that will greatly reduce the complexity of measuring, modeling and designing for nonlinear regimes of operation. Containing real-world case studies, definitions of standard symbols and notation, detailed derivations within the appendices, and exercises with solutions, this is the definitive stand-alone reference for researchers, engineers, scientists and students looking to remain on the cutting-edge of RF and microwave engineering.

Book Bandwidth and Efficiency Enhancement in Radio Frequency Power Amplifiers for Wireless Transmitters

Download or read book Bandwidth and Efficiency Enhancement in Radio Frequency Power Amplifiers for Wireless Transmitters written by Karun Rawat and published by Springer. This book was released on 2021-03-06 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on broadband power amplifier design for wireless communication. Nonlinear model embedding is described as a powerful tool for designing broadband continuous Class-J and continuous class F power amplifiers. The authors also discuss various techniques for extending bandwidth of load modulation based power amplifiers, such as Doherty power amplifier and Chireix outphasing amplifiers. The book also covers recent trends on digital as well as analog techniques to enhance bandwidth and linearity in wireless transmitters. Presents latest trends in designing broadband power amplifiers; Covers latest techniques for using nonlinear model embedding in designing power amplifiers based on waveform engineering; Describes the latest techniques for extending bandwidth of load modulation based power amplifiers such as Doherty power amplifier and Chireix outphasing amplifiers; Includes coverage of hybrid analog/digital predistortion as wideband solution for wireless transmitters; Discusses recent trends on on-chip power amplifier design with GaN /GaAs MMICs for high frequency applications.

Book Nonlinear Circuit Simulation and Modeling

Download or read book Nonlinear Circuit Simulation and Modeling written by José Carlos Pedro and published by Cambridge University Press. This book was released on 2018-06-14 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, tutorial guide to the nonlinear methods and techniques needed to design real-world microwave circuits.

Book Semiconductor Device Characterization and Modelling for Effective Design of 5G Front Ends

Download or read book Semiconductor Device Characterization and Modelling for Effective Design of 5G Front Ends written by Ahmed Raslan and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The realization of fifth-generation mobile communication will require transceiver front-ends that can handle data-rates of multi-gigabits per second. To provide such data-rates, bandwidth in the hundreds of megahertz will need to be available; hence, moving to millimeter wave frequencies is a must. Utilizing millimeter waves will provide a very high level of integration to the transceiver system, and concepts such as massive multiple-input-multiple-output could be exploited to enable higher data capacities. In order to design such a front-end, accurate simulation tools for both the system and circuit levels are needed. The first is needed because a high-level of integration prevents any opportunity for post-fabrication tweaking; accurate simulation will optimize a first-pass design. The second is essential to preserve the overall efficiency of the system; configurations incorporating a large number of power amplifiers (PAs) will require new design methodologies to enable linear and efficient operation. Unfortunately, existing transistor models cannot be used for these simulations as they cannot predict the device behaviour under real-life operating conditions (i.e., under modulated signal stimulus). The objective of this thesis is to propose a transistor model that can be used in circuit simulators under any stimulus, including modulated signals. This means that the proposed model will need to be accurate both globally and locally. While the former property relates to the compact modelling approach, the latter relates to behavioural modelling. Thus, the proposed model will bridge the gap between the two modelling approaches. This thesis starts by studying existing compact and behavioural modelling techniques for radio frequency power transistors. These techniques will be grouped based on the common properties imposed by the model structure (i.e., model formulation and extraction measurements) to help with problem identification. Based on this study, high-order network parameters (HONPs) are proposed. HONPs represent a new set of Volterra-based network parameters that are capable of completely describing weakly-nonlinear (WNL) behaviours of the transistor, and hence guaranteeing the local accuracy of the model. It will be proven, in both measurement and simulation environments, that these parameters exhibit the same properties of linear network parameters represented in power independency, and solution continuity and uniqueness. Therefore, HONPs represent a true extension of linear network parameters. Furthermore, HONPs will be extracted using continuous-wave (CW) nonlinear vector network analyzer (NVNA) measurements, and their ability to predict the device WNL behaviours will be demonstrated using wideband multi-tone stimuli in both simulation and measurement environments. Next, a novel compact model that utilizes these parameters as a building block will be proposed. New model formulations and extraction techniques will be presented. Model implementation will be performed in two parts. First, a small-signal model will be generated using a new layered-neural network (NN) technique that allows testing different topologies for the extrinsic and intrinsic shells, in an automated manner. Second, an intrinsic HONPs-based large-signal model will be constructed using a novel NN technique that allows optimizing a nonlinear function to fit first and high-order derivatives simultaneously. Finally, the proposed model will be tested under different circuit simulators (direct-current, small-signal, harmonic balance and envelope simulators). Modulated signal validations will be shown in the simulation environment. Also, a two-tone measurement validation using a class-AB PA will be presented.

Book Nonlinear Circuit Simulation and Modeling

Download or read book Nonlinear Circuit Simulation and Modeling written by José Carlos Pedro and published by Cambridge University Press. This book was released on 2018-06-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the nonlinear methods and tools needed to design real-world microwave circuits with this tutorial guide. Balancing theoretical background with practical tools and applications, it covers everything from the basic properties of nonlinear systems such as gain compression, intermodulation and harmonic distortion, to nonlinear circuit analysis and simulation algorithms, and state-of-the-art equivalent circuit and behavioral modeling techniques. Model formulations discussed in detail include time-domain transistor compact models and frequency-domain linear and nonlinear scattering models. Learn how to apply these tools to designing real circuits with the help of a power amplifier design example, which covers all stages from active device model extraction and the selection of bias and terminations, through to performance verification. Realistic examples, illustrative insights and clearly conveyed mathematical formalism make this an essential learning aid for both professionals working in microwave and RF engineering and graduate students looking for a hands-on guide to microwave circuit design.

Book Distortion Analysis of Analog Integrated Circuits

Download or read book Distortion Analysis of Analog Integrated Circuits written by Piet Wambacq and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis and prediction of nonlinear behavior in electronic circuits has long been a topic of concern for analog circuit designers. The recent explosion of interest in portable electronics such as cellular telephones, cordless telephones and other applications has served to reinforce the importance of these issues. The need now often arises to predict and optimize the distortion performance of diverse electronic circuit configurations operating in the gigahertz frequency range, where nonlinear reactive effects often dominate. However, there have historically been few sources available from which design engineers could obtain information on analysis tech niques suitable for tackling these important problems. I am sure that the analog circuit design community will thus welcome this work by Dr. Wambacq and Professor Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to hav ing a copy readily available for reference when designing integrated circuits for communication systems.