EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Birth of Numerical Analysis

Download or read book The Birth of Numerical Analysis written by Adhemar Bultheel and published by World Scientific. This book was released on 2010 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1947 paper by John von Neumann and Herman Goldstine, OC Numerical Inverting of Matrices of High OrderOCO ( Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years. Sample Chapter(s). Chapter 1: Some pioneers of extrapolation methods (323 KB). Contents: Some Pioneers of Extrapolation Methods (C Brezinski); Very Basic Multidimensional Extrapolation Quadrature (J N Lyness); Numerical Methods for Ordinary Differential Equations: Early Days (J C Butcher); Interview with Herbert Bishop Keller (H M Osinga); A Personal Perspective on the History of the Numerical Analysis of Fredholm Integral Equations of the Second Kind (K Atkinson); Memoires on Building on General Purpose Numerical Algorithms Library (B Ford); Recent Trends in High Performance Computing (J J Dongarra et al.); Nonnegativity Constraints in Numerical Analysis (D-H Chen & R J Plemmons); On Nonlinear Optimization Since 1959 (M J D Powell); The History and Development of Numerical Analysis in Scotland: A Personal Perspective (G Alistair Watson); Remembering Philip Rabinowitz (P J Davis & A S Fraenkel); My Early Experiences with Scientific Computation (P J Davis); Applications of Chebyshev Polynomials: From Theoretical Kinematics to Practical Computations (R Piessens). Readership: Mathematicians in numerical analysis and mathematicians who are interested in the history of mathematics.

Book Artificial Neural Networks   ICANN 2008

Download or read book Artificial Neural Networks ICANN 2008 written by Vera Kurkova-Pohlova and published by Springer. This book was released on 2008-09-08 with total page 1053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.

Book Parallel Processing and Applied Mathematics

Download or read book Parallel Processing and Applied Mathematics written by Roman Wyrzykowski and published by Springer. This book was released on 2018-03-22 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 10777 and 10778 constitutes revised selected papers from the 12th International Conference on Parallel Processing and Applied Mathematics, PPAM 2017, held in Lublin, Poland, in September 2017. The 49 regular papers presented in this volume were selected from 98 submissions. For the workshops and special sessions, that were held as integral parts of the PPAM 2017 conference, a total of 51 papers was accepted from 75 submissions. The papers were organized in topical sections named as follows: Part I: numerical algorithms and parallel scientific computing; particle methods in simulations; task-based paradigm of parallel computing; GPU computing; parallel non-numerical algorithms; performance evaluation of parallel algorithms and applications; environments and frameworks for parallel/distributed/cloud computing; applications of parallel computing; soft computing with applications; and special session on parallel matrix factorizations. Part II: workshop on models, algorithms and methodologies for hybrid parallelism in new HPC systems; workshop power and energy aspects of computations (PEAC 2017); workshop on scheduling for parallel computing (SPC 2017); workshop on language-based parallel programming models (WLPP 2017); workshop on PGAS programming; minisymposium on HPC applications in physical sciences; minisymposium on high performance computing interval methods; workshop on complex collective systems.

Book Solving Least Squares Problems

Download or read book Solving Least Squares Problems written by Charles L. Lawson and published by SIAM. This book was released on 1995-12-01 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.

Book Nonnegative Matrix and Tensor Factorizations

Download or read book Nonnegative Matrix and Tensor Factorizations written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 2009-07-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Book Numerical Methods for Least Squares Problems

Download or read book Numerical Methods for Least Squares Problems written by Ake Bjorck and published by SIAM. This book was released on 1996-01-01 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.

Book Nonnegative Matrix Factorization

Download or read book Nonnegative Matrix Factorization written by Nicolas Gillis and published by SIAM. This book was released on 2020-12-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.

Book High Performance Scientific Computing

Download or read book High Performance Scientific Computing written by Michael W. Berry and published by Springer Science & Business Media. This book was released on 2012-01-18 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.

Book Parameter Estimation and Inverse Problems

Download or read book Parameter Estimation and Inverse Problems written by Richard C. Aster and published by Elsevier. This book was released on 2018-10-16 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner

Book Applied Optimization

Download or read book Applied Optimization written by Ross Baldick and published by Cambridge University Press. This book was released on 2006-05-04 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step descriptions of how to formulate numerical problems to be solved by existing software.

Book Numerical Optimization

    Book Details:
  • Author : Jorge Nocedal
  • Publisher : Springer Science & Business Media
  • Release : 2006-12-11
  • ISBN : 0387400656
  • Pages : 686 pages

Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Data Mining  Foundations and Intelligent Paradigms

Download or read book Data Mining Foundations and Intelligent Paradigms written by Dawn E. Holmes and published by Springer Science & Business Media. This book was released on 2011-11-09 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 2: Core Topics including Statistical, Time-Series and Bayesian Analysis” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.

Book Convex Optimization in Signal Processing and Communications

Download or read book Convex Optimization in Signal Processing and Communications written by Daniel P. Palomar and published by Cambridge University Press. This book was released on 2010 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.

Book Optimization and Control with Applications

Download or read book Optimization and Control with Applications written by Liqun Qi and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.

Book Numerical Algorithms

    Book Details:
  • Author : Justin Solomon
  • Publisher : CRC Press
  • Release : 2015-06-24
  • ISBN : 1482251892
  • Pages : 400 pages

Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Book Iterative Methods for Optimization

Download or read book Iterative Methods for Optimization written by C. T. Kelley and published by SIAM. This book was released on 1999-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.